Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon–carbon composite rechargeable Li-ion battery anodes

Long term cyclability of a composite Li-ion anode electrode comprised of 82 wt.% Si/C lithium ion active material along with 8 wt.% polymeric binder and 10 wt.% Super P conductive carbon black has been studied utilizing polymeric binders exhibiting different elastic/tensile moduli and tensile yield...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2015-12, Vol.298 (C), p.331-340
Hauptverfasser: Kuruba, Ramalinga, Datta, Moni Kanchan, Damodaran, Krishnan, Jampani, Prashanth H., Gattu, Bharat, Patel, Prasad P., Shanthi, Pavithra M., Damle, Sameer, Kumta, Prashant N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 340
container_issue C
container_start_page 331
container_title Journal of power sources
container_volume 298
creator Kuruba, Ramalinga
Datta, Moni Kanchan
Damodaran, Krishnan
Jampani, Prashanth H.
Gattu, Bharat
Patel, Prasad P.
Shanthi, Pavithra M.
Damle, Sameer
Kumta, Prashant N.
description Long term cyclability of a composite Li-ion anode electrode comprised of 82 wt.% Si/C lithium ion active material along with 8 wt.% polymeric binder and 10 wt.% Super P conductive carbon black has been studied utilizing polymeric binders exhibiting different elastic/tensile moduli and tensile yield strengths. Accordingly, electrochemically active Si/C composite synthesized by high energy mechanical milling (HEMM), exhibiting reversible specific capacities of ∼780 mAh/g and ∼600 mAh/g at charge/discharge rates of ∼50 mA/g and ∼200 mA/g, respectively were selected as the Li-ion active anode. Polyvinylidene fluoride (PVDF) and purified guar gum (PGG) with reported elastic moduli ∼1000 MPa and ∼3200 MPa, respectively were selected as the binders. Results show that the composite electrode (Si/C + binder + conducting carbon) comprising the higher elastic modulus binder (PGG) exhibits better long term cyclability contrasted with PVDF. 1H-NMR analysis of the polymer before and after cycling shows structural degradation/deformation of the low elastic modulus PVDF, whereas the high elastic modulus PGG binder shows no permanent structural deformation or damage. The results presented herein thus suggest that PGG based polymers exhibiting high elastic modulus are a promising class of binders with the desired mechanical integrity needed for enduring the colossal volume expansion stresses of Si/C based composite anodes. [Display omitted] •Cyclability of Si/C composite was studied with different polymeric binders.•Si/C composite exhibit reversible capacity of ∼780 mAh/g at ∼50 mA/g (C/16) rate.•PVDF and PGG binders were selected with elastic moduli of ∼1000 MPa and ∼3200 MPa, respectively.•Higher elastic modulus PGG binder shows better long term cyclability compared to PVDF binder.•1H-NMR shows structural degradation of PVDF, whereas PGG shows structural integrity beyond 100 cycles.
doi_str_mv 10.1016/j.jpowsour.2015.07.102
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1250164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775315301191</els_id><sourcerecordid>S0378775315301191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-52f678ab92a029fea1bfb82f5c54b0d88bd696a5be9baa2554ccc818d4ef06433</originalsourceid><addsrcrecordid>eNqFUc2u1CAUJkYTx6uvYIj7jkBLaV1pbvRqMokLdU0OcLjDpC0ToJpx5Tu49O18EmlG164IX76fc85HyHPO9pzx_uVpfzrHbzmuaS8Yl3umKi4ekB0fVNsIJeVDsmOtGhqlZPuYPMn5xBjjXLEd-XW3QqL36_yKfipptWVNMFFYHMUJbUnRHnEOtmL2CAlswRS-QwlxodHTBa78c5wuMyZqIKOjJiyufnxMNIcp2Lj8_vHTQjJVZON8jjkUpAk3x3sEMyE9hGazNFBqwKXmR4f5KXnkYcr47O97Q768e_v59n1z-Hj34fbNobHd2JVGCt-rAcwogInRI3DjzSC8tLIzzA2Dcf3YgzQ4GgAhZWetHfjgOvSs79r2hry4-sZcgs62TmePdeqlHkBzIeuRu0rqrySbYs4JvT6nMEO6aM701oM-6X896K0HzVTFRRW-vgqxrvA1YNoScLHoQtoCXAz_s_gD9Eybbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon–carbon composite rechargeable Li-ion battery anodes</title><source>Elsevier ScienceDirect Journals</source><creator>Kuruba, Ramalinga ; Datta, Moni Kanchan ; Damodaran, Krishnan ; Jampani, Prashanth H. ; Gattu, Bharat ; Patel, Prasad P. ; Shanthi, Pavithra M. ; Damle, Sameer ; Kumta, Prashant N.</creator><creatorcontrib>Kuruba, Ramalinga ; Datta, Moni Kanchan ; Damodaran, Krishnan ; Jampani, Prashanth H. ; Gattu, Bharat ; Patel, Prasad P. ; Shanthi, Pavithra M. ; Damle, Sameer ; Kumta, Prashant N.</creatorcontrib><description>Long term cyclability of a composite Li-ion anode electrode comprised of 82 wt.% Si/C lithium ion active material along with 8 wt.% polymeric binder and 10 wt.% Super P conductive carbon black has been studied utilizing polymeric binders exhibiting different elastic/tensile moduli and tensile yield strengths. Accordingly, electrochemically active Si/C composite synthesized by high energy mechanical milling (HEMM), exhibiting reversible specific capacities of ∼780 mAh/g and ∼600 mAh/g at charge/discharge rates of ∼50 mA/g and ∼200 mA/g, respectively were selected as the Li-ion active anode. Polyvinylidene fluoride (PVDF) and purified guar gum (PGG) with reported elastic moduli ∼1000 MPa and ∼3200 MPa, respectively were selected as the binders. Results show that the composite electrode (Si/C + binder + conducting carbon) comprising the higher elastic modulus binder (PGG) exhibits better long term cyclability contrasted with PVDF. 1H-NMR analysis of the polymer before and after cycling shows structural degradation/deformation of the low elastic modulus PVDF, whereas the high elastic modulus PGG binder shows no permanent structural deformation or damage. The results presented herein thus suggest that PGG based polymers exhibiting high elastic modulus are a promising class of binders with the desired mechanical integrity needed for enduring the colossal volume expansion stresses of Si/C based composite anodes. [Display omitted] •Cyclability of Si/C composite was studied with different polymeric binders.•Si/C composite exhibit reversible capacity of ∼780 mAh/g at ∼50 mA/g (C/16) rate.•PVDF and PGG binders were selected with elastic moduli of ∼1000 MPa and ∼3200 MPa, respectively.•Higher elastic modulus PGG binder shows better long term cyclability compared to PVDF binder.•1H-NMR shows structural degradation of PVDF, whereas PGG shows structural integrity beyond 100 cycles.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2015.07.102</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Anode ; Binder ; Composite ; Li-ion ; Silicon</subject><ispartof>Journal of power sources, 2015-12, Vol.298 (C), p.331-340</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-52f678ab92a029fea1bfb82f5c54b0d88bd696a5be9baa2554ccc818d4ef06433</citedby><cites>FETCH-LOGICAL-c494t-52f678ab92a029fea1bfb82f5c54b0d88bd696a5be9baa2554ccc818d4ef06433</cites><orcidid>0000-0003-1227-1249 ; 0000000312271249</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775315301191$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1250164$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuruba, Ramalinga</creatorcontrib><creatorcontrib>Datta, Moni Kanchan</creatorcontrib><creatorcontrib>Damodaran, Krishnan</creatorcontrib><creatorcontrib>Jampani, Prashanth H.</creatorcontrib><creatorcontrib>Gattu, Bharat</creatorcontrib><creatorcontrib>Patel, Prasad P.</creatorcontrib><creatorcontrib>Shanthi, Pavithra M.</creatorcontrib><creatorcontrib>Damle, Sameer</creatorcontrib><creatorcontrib>Kumta, Prashant N.</creatorcontrib><title>Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon–carbon composite rechargeable Li-ion battery anodes</title><title>Journal of power sources</title><description>Long term cyclability of a composite Li-ion anode electrode comprised of 82 wt.% Si/C lithium ion active material along with 8 wt.% polymeric binder and 10 wt.% Super P conductive carbon black has been studied utilizing polymeric binders exhibiting different elastic/tensile moduli and tensile yield strengths. Accordingly, electrochemically active Si/C composite synthesized by high energy mechanical milling (HEMM), exhibiting reversible specific capacities of ∼780 mAh/g and ∼600 mAh/g at charge/discharge rates of ∼50 mA/g and ∼200 mA/g, respectively were selected as the Li-ion active anode. Polyvinylidene fluoride (PVDF) and purified guar gum (PGG) with reported elastic moduli ∼1000 MPa and ∼3200 MPa, respectively were selected as the binders. Results show that the composite electrode (Si/C + binder + conducting carbon) comprising the higher elastic modulus binder (PGG) exhibits better long term cyclability contrasted with PVDF. 1H-NMR analysis of the polymer before and after cycling shows structural degradation/deformation of the low elastic modulus PVDF, whereas the high elastic modulus PGG binder shows no permanent structural deformation or damage. The results presented herein thus suggest that PGG based polymers exhibiting high elastic modulus are a promising class of binders with the desired mechanical integrity needed for enduring the colossal volume expansion stresses of Si/C based composite anodes. [Display omitted] •Cyclability of Si/C composite was studied with different polymeric binders.•Si/C composite exhibit reversible capacity of ∼780 mAh/g at ∼50 mA/g (C/16) rate.•PVDF and PGG binders were selected with elastic moduli of ∼1000 MPa and ∼3200 MPa, respectively.•Higher elastic modulus PGG binder shows better long term cyclability compared to PVDF binder.•1H-NMR shows structural degradation of PVDF, whereas PGG shows structural integrity beyond 100 cycles.</description><subject>Anode</subject><subject>Binder</subject><subject>Composite</subject><subject>Li-ion</subject><subject>Silicon</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUc2u1CAUJkYTx6uvYIj7jkBLaV1pbvRqMokLdU0OcLjDpC0ToJpx5Tu49O18EmlG164IX76fc85HyHPO9pzx_uVpfzrHbzmuaS8Yl3umKi4ekB0fVNsIJeVDsmOtGhqlZPuYPMn5xBjjXLEd-XW3QqL36_yKfipptWVNMFFYHMUJbUnRHnEOtmL2CAlswRS-QwlxodHTBa78c5wuMyZqIKOjJiyufnxMNIcp2Lj8_vHTQjJVZON8jjkUpAk3x3sEMyE9hGazNFBqwKXmR4f5KXnkYcr47O97Q768e_v59n1z-Hj34fbNobHd2JVGCt-rAcwogInRI3DjzSC8tLIzzA2Dcf3YgzQ4GgAhZWetHfjgOvSs79r2hry4-sZcgs62TmePdeqlHkBzIeuRu0rqrySbYs4JvT6nMEO6aM701oM-6X896K0HzVTFRRW-vgqxrvA1YNoScLHoQtoCXAz_s_gD9Eybbw</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Kuruba, Ramalinga</creator><creator>Datta, Moni Kanchan</creator><creator>Damodaran, Krishnan</creator><creator>Jampani, Prashanth H.</creator><creator>Gattu, Bharat</creator><creator>Patel, Prasad P.</creator><creator>Shanthi, Pavithra M.</creator><creator>Damle, Sameer</creator><creator>Kumta, Prashant N.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1227-1249</orcidid><orcidid>https://orcid.org/0000000312271249</orcidid></search><sort><creationdate>20151201</creationdate><title>Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon–carbon composite rechargeable Li-ion battery anodes</title><author>Kuruba, Ramalinga ; Datta, Moni Kanchan ; Damodaran, Krishnan ; Jampani, Prashanth H. ; Gattu, Bharat ; Patel, Prasad P. ; Shanthi, Pavithra M. ; Damle, Sameer ; Kumta, Prashant N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-52f678ab92a029fea1bfb82f5c54b0d88bd696a5be9baa2554ccc818d4ef06433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anode</topic><topic>Binder</topic><topic>Composite</topic><topic>Li-ion</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuruba, Ramalinga</creatorcontrib><creatorcontrib>Datta, Moni Kanchan</creatorcontrib><creatorcontrib>Damodaran, Krishnan</creatorcontrib><creatorcontrib>Jampani, Prashanth H.</creatorcontrib><creatorcontrib>Gattu, Bharat</creatorcontrib><creatorcontrib>Patel, Prasad P.</creatorcontrib><creatorcontrib>Shanthi, Pavithra M.</creatorcontrib><creatorcontrib>Damle, Sameer</creatorcontrib><creatorcontrib>Kumta, Prashant N.</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuruba, Ramalinga</au><au>Datta, Moni Kanchan</au><au>Damodaran, Krishnan</au><au>Jampani, Prashanth H.</au><au>Gattu, Bharat</au><au>Patel, Prasad P.</au><au>Shanthi, Pavithra M.</au><au>Damle, Sameer</au><au>Kumta, Prashant N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon–carbon composite rechargeable Li-ion battery anodes</atitle><jtitle>Journal of power sources</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>298</volume><issue>C</issue><spage>331</spage><epage>340</epage><pages>331-340</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><abstract>Long term cyclability of a composite Li-ion anode electrode comprised of 82 wt.% Si/C lithium ion active material along with 8 wt.% polymeric binder and 10 wt.% Super P conductive carbon black has been studied utilizing polymeric binders exhibiting different elastic/tensile moduli and tensile yield strengths. Accordingly, electrochemically active Si/C composite synthesized by high energy mechanical milling (HEMM), exhibiting reversible specific capacities of ∼780 mAh/g and ∼600 mAh/g at charge/discharge rates of ∼50 mA/g and ∼200 mA/g, respectively were selected as the Li-ion active anode. Polyvinylidene fluoride (PVDF) and purified guar gum (PGG) with reported elastic moduli ∼1000 MPa and ∼3200 MPa, respectively were selected as the binders. Results show that the composite electrode (Si/C + binder + conducting carbon) comprising the higher elastic modulus binder (PGG) exhibits better long term cyclability contrasted with PVDF. 1H-NMR analysis of the polymer before and after cycling shows structural degradation/deformation of the low elastic modulus PVDF, whereas the high elastic modulus PGG binder shows no permanent structural deformation or damage. The results presented herein thus suggest that PGG based polymers exhibiting high elastic modulus are a promising class of binders with the desired mechanical integrity needed for enduring the colossal volume expansion stresses of Si/C based composite anodes. [Display omitted] •Cyclability of Si/C composite was studied with different polymeric binders.•Si/C composite exhibit reversible capacity of ∼780 mAh/g at ∼50 mA/g (C/16) rate.•PVDF and PGG binders were selected with elastic moduli of ∼1000 MPa and ∼3200 MPa, respectively.•Higher elastic modulus PGG binder shows better long term cyclability compared to PVDF binder.•1H-NMR shows structural degradation of PVDF, whereas PGG shows structural integrity beyond 100 cycles.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2015.07.102</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1227-1249</orcidid><orcidid>https://orcid.org/0000000312271249</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2015-12, Vol.298 (C), p.331-340
issn 0378-7753
1873-2755
language eng
recordid cdi_osti_scitechconnect_1250164
source Elsevier ScienceDirect Journals
subjects Anode
Binder
Composite
Li-ion
Silicon
title Guar gum: Structural and electrochemical characterization of natural polymer based binder for silicon–carbon composite rechargeable Li-ion battery anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A21%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Guar%20gum:%20Structural%20and%20electrochemical%20characterization%20of%20natural%20polymer%20based%20binder%20for%20silicon%E2%80%93carbon%20composite%20rechargeable%20Li-ion%20battery%20anodes&rft.jtitle=Journal%20of%20power%20sources&rft.au=Kuruba,%20Ramalinga&rft.date=2015-12-01&rft.volume=298&rft.issue=C&rft.spage=331&rft.epage=340&rft.pages=331-340&rft.issn=0378-7753&rft.eissn=1873-2755&rft_id=info:doi/10.1016/j.jpowsour.2015.07.102&rft_dat=%3Celsevier_osti_%3ES0378775315301191%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0378775315301191&rfr_iscdi=true