Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes

Solar-blind photodetection and photoconductive gain >50 corresponding to a responsivity >8 A/W were observed for β-Ga2O3 Schottky photodiodes. The origin of photoconductive gain was investigated. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2016-03, Vol.119 (10)
Hauptverfasser: Armstrong, Andrew M., Crawford, Mary H., Jayawardena, Asanka, Ahyi, Ayayi, Dhar, Sarit
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solar-blind photodetection and photoconductive gain >50 corresponding to a responsivity >8 A/W were observed for β-Ga2O3 Schottky photodiodes. The origin of photoconductive gain was investigated. Current-voltage characteristics of the diodes did not indicate avalanche breakdown, which excludes carrier multiplication by impact ionization as the source for gain. However, photocapacitance measurements indicated a mechanism for hole localization for above-band gap illumination, suggesting self-trapped hole formation. Comparison of photoconductivity and photocapacitance spectra indicated that self-trapped hole formation coincides with the strong photoconductive gain. It is concluded that self-trapped hole formation near the Schottky diode lowers the effective Schottky barrier in reverse bias, producing photoconductive gain. Ascribing photoconductive gain to an inherent property like self-trapping of holes can explain the operation of a variety of β-Ga2O3 photodetectors.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.4943261