Investigation of long term reactive stability of ceria for use in solar thermochemical cycles

The use of an intermediate reactive material composed of cerium (IV) oxide (ceria) is explored for solar fuel production through a CO2-splitting thermochemical redox cycle. To this end, powder and porous ceria samples are tested with TGA (thermogravimetric analysis) to ascertain their maximum fuel p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2015-09, Vol.89 (C), p.924-931
Hauptverfasser: Rhodes, Nathan R., Bobek, Michael M., Allen, Kyle M., Hahn, David W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 931
container_issue C
container_start_page 924
container_title Energy (Oxford)
container_volume 89
creator Rhodes, Nathan R.
Bobek, Michael M.
Allen, Kyle M.
Hahn, David W.
description The use of an intermediate reactive material composed of cerium (IV) oxide (ceria) is explored for solar fuel production through a CO2-splitting thermochemical redox cycle. To this end, powder and porous ceria samples are tested with TGA (thermogravimetric analysis) to ascertain their maximum fuel production potential from the CeO2 → CeO2−δ cycle. A maximum value of the non-stoichiometric reduction factor δ of ceria powder was 0.0383 at 1450 °C. The reactive stability of a synthesized porous ceria sample is then observed with carbon dioxide splitting at 1100 °C and thermal reduction at 1450 °C. Approximately 86.4% of initial fuel production is retained after 2000 cycles, and the mean value of δ is found to be 0.0197. SEM (scanning electron microscopy) imaging suggests that the porous ceria structure is retained over 2000 cycles despite apparent loss of some surface area. EDS (energy dispersive x-ray spectroscopy) line scans show that oxidation of porous ceria becomes increasingly homogenous throughout the bulk material over an increasing number of cycles. Significant retention of reactivity and porous structure demonstrates the potential of porous ceria for use in a commercial thermochemical reactor. •Ceria is explored for solar fuel production through a CO2-splitting redox cycle.•Stability of porous ceria is observed with carbon dioxide splitting at 1100 °C.•Greater than 86% of initial fuel production is retained after 2000 cycles.•SEM imaging reveals that the porous structure is retained over 2000 cycles.•Findings reveal that ceria structures are compatible with actual implementation.
doi_str_mv 10.1016/j.energy.2015.06.041
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1247782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544215007975</els_id><sourcerecordid>1765966261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-d8e9181013bd3a302465c46e4d5dadcdea50c3db2a8b303cb662f885d2a492803</originalsourceid><addsrcrecordid>eNqNkTFPHDEQhbcACQL5BxQWVZrb2F7b520iRQgIEhINlJHlHc_e-bRnE9t30v17vNrUiGqK-d7Tm3lNc8NoyyhTP3ctBkybU8spky1VLRXsrLmknaIrKQS_aL7lvKOUSt33l83fp3DEXPzGFh8DiSOZYtiQgmlPEloo_ogkFzv4yZfTvAdM3pIxJnLISHwgOU42kbKtkghb3HuwE4ETTJivm_PRThm__59XzdvD_evdn9Xzy-PT3e_nFUgmy8pp7Jmu8bvBdbajXCgJQqFw0lkHDq2k0LmBWz10tINBKT5qLR23oueadlfN7eIb6ykmgy8IW4ghIBTDuFivNa_QjwV6T_HfoR5t9j4DTpMNGA_ZsLWWXHK1Zl9AlexrCDWjYkEhxZwTjuY9-b1NJ8OomRsxO7M0YuZGDFWmNlJlvxYZ1rccPaY5NQZA59Mc2kX_ucEHNhCYrQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765966261</pqid></control><display><type>article</type><title>Investigation of long term reactive stability of ceria for use in solar thermochemical cycles</title><source>Access via ScienceDirect (Elsevier)</source><creator>Rhodes, Nathan R. ; Bobek, Michael M. ; Allen, Kyle M. ; Hahn, David W.</creator><creatorcontrib>Rhodes, Nathan R. ; Bobek, Michael M. ; Allen, Kyle M. ; Hahn, David W.</creatorcontrib><description>The use of an intermediate reactive material composed of cerium (IV) oxide (ceria) is explored for solar fuel production through a CO2-splitting thermochemical redox cycle. To this end, powder and porous ceria samples are tested with TGA (thermogravimetric analysis) to ascertain their maximum fuel production potential from the CeO2 → CeO2−δ cycle. A maximum value of the non-stoichiometric reduction factor δ of ceria powder was 0.0383 at 1450 °C. The reactive stability of a synthesized porous ceria sample is then observed with carbon dioxide splitting at 1100 °C and thermal reduction at 1450 °C. Approximately 86.4% of initial fuel production is retained after 2000 cycles, and the mean value of δ is found to be 0.0197. SEM (scanning electron microscopy) imaging suggests that the porous ceria structure is retained over 2000 cycles despite apparent loss of some surface area. EDS (energy dispersive x-ray spectroscopy) line scans show that oxidation of porous ceria becomes increasingly homogenous throughout the bulk material over an increasing number of cycles. Significant retention of reactivity and porous structure demonstrates the potential of porous ceria for use in a commercial thermochemical reactor. •Ceria is explored for solar fuel production through a CO2-splitting redox cycle.•Stability of porous ceria is observed with carbon dioxide splitting at 1100 °C.•Greater than 86% of initial fuel production is retained after 2000 cycles.•SEM imaging reveals that the porous structure is retained over 2000 cycles.•Findings reveal that ceria structures are compatible with actual implementation.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2015.06.041</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Carbon dioxide ; Ceria ; Cerium oxide ; CO2 splitting ; Fuel production ; Oxides ; Reactive stability ; Scanning electron microscopy ; Solar fuels ; Stability ; Surface area ; Thermal reduction ; Thermochemical cycle</subject><ispartof>Energy (Oxford), 2015-09, Vol.89 (C), p.924-931</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-d8e9181013bd3a302465c46e4d5dadcdea50c3db2a8b303cb662f885d2a492803</citedby><cites>FETCH-LOGICAL-c515t-d8e9181013bd3a302465c46e4d5dadcdea50c3db2a8b303cb662f885d2a492803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2015.06.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1247782$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rhodes, Nathan R.</creatorcontrib><creatorcontrib>Bobek, Michael M.</creatorcontrib><creatorcontrib>Allen, Kyle M.</creatorcontrib><creatorcontrib>Hahn, David W.</creatorcontrib><title>Investigation of long term reactive stability of ceria for use in solar thermochemical cycles</title><title>Energy (Oxford)</title><description>The use of an intermediate reactive material composed of cerium (IV) oxide (ceria) is explored for solar fuel production through a CO2-splitting thermochemical redox cycle. To this end, powder and porous ceria samples are tested with TGA (thermogravimetric analysis) to ascertain their maximum fuel production potential from the CeO2 → CeO2−δ cycle. A maximum value of the non-stoichiometric reduction factor δ of ceria powder was 0.0383 at 1450 °C. The reactive stability of a synthesized porous ceria sample is then observed with carbon dioxide splitting at 1100 °C and thermal reduction at 1450 °C. Approximately 86.4% of initial fuel production is retained after 2000 cycles, and the mean value of δ is found to be 0.0197. SEM (scanning electron microscopy) imaging suggests that the porous ceria structure is retained over 2000 cycles despite apparent loss of some surface area. EDS (energy dispersive x-ray spectroscopy) line scans show that oxidation of porous ceria becomes increasingly homogenous throughout the bulk material over an increasing number of cycles. Significant retention of reactivity and porous structure demonstrates the potential of porous ceria for use in a commercial thermochemical reactor. •Ceria is explored for solar fuel production through a CO2-splitting redox cycle.•Stability of porous ceria is observed with carbon dioxide splitting at 1100 °C.•Greater than 86% of initial fuel production is retained after 2000 cycles.•SEM imaging reveals that the porous structure is retained over 2000 cycles.•Findings reveal that ceria structures are compatible with actual implementation.</description><subject>Carbon dioxide</subject><subject>Ceria</subject><subject>Cerium oxide</subject><subject>CO2 splitting</subject><subject>Fuel production</subject><subject>Oxides</subject><subject>Reactive stability</subject><subject>Scanning electron microscopy</subject><subject>Solar fuels</subject><subject>Stability</subject><subject>Surface area</subject><subject>Thermal reduction</subject><subject>Thermochemical cycle</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkTFPHDEQhbcACQL5BxQWVZrb2F7b520iRQgIEhINlJHlHc_e-bRnE9t30v17vNrUiGqK-d7Tm3lNc8NoyyhTP3ctBkybU8spky1VLRXsrLmknaIrKQS_aL7lvKOUSt33l83fp3DEXPzGFh8DiSOZYtiQgmlPEloo_ogkFzv4yZfTvAdM3pIxJnLISHwgOU42kbKtkghb3HuwE4ETTJivm_PRThm__59XzdvD_evdn9Xzy-PT3e_nFUgmy8pp7Jmu8bvBdbajXCgJQqFw0lkHDq2k0LmBWz10tINBKT5qLR23oueadlfN7eIb6ykmgy8IW4ghIBTDuFivNa_QjwV6T_HfoR5t9j4DTpMNGA_ZsLWWXHK1Zl9AlexrCDWjYkEhxZwTjuY9-b1NJ8OomRsxO7M0YuZGDFWmNlJlvxYZ1rccPaY5NQZA59Mc2kX_ucEHNhCYrQ</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Rhodes, Nathan R.</creator><creator>Bobek, Michael M.</creator><creator>Allen, Kyle M.</creator><creator>Hahn, David W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150901</creationdate><title>Investigation of long term reactive stability of ceria for use in solar thermochemical cycles</title><author>Rhodes, Nathan R. ; Bobek, Michael M. ; Allen, Kyle M. ; Hahn, David W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-d8e9181013bd3a302465c46e4d5dadcdea50c3db2a8b303cb662f885d2a492803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon dioxide</topic><topic>Ceria</topic><topic>Cerium oxide</topic><topic>CO2 splitting</topic><topic>Fuel production</topic><topic>Oxides</topic><topic>Reactive stability</topic><topic>Scanning electron microscopy</topic><topic>Solar fuels</topic><topic>Stability</topic><topic>Surface area</topic><topic>Thermal reduction</topic><topic>Thermochemical cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rhodes, Nathan R.</creatorcontrib><creatorcontrib>Bobek, Michael M.</creatorcontrib><creatorcontrib>Allen, Kyle M.</creatorcontrib><creatorcontrib>Hahn, David W.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rhodes, Nathan R.</au><au>Bobek, Michael M.</au><au>Allen, Kyle M.</au><au>Hahn, David W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of long term reactive stability of ceria for use in solar thermochemical cycles</atitle><jtitle>Energy (Oxford)</jtitle><date>2015-09-01</date><risdate>2015</risdate><volume>89</volume><issue>C</issue><spage>924</spage><epage>931</epage><pages>924-931</pages><issn>0360-5442</issn><abstract>The use of an intermediate reactive material composed of cerium (IV) oxide (ceria) is explored for solar fuel production through a CO2-splitting thermochemical redox cycle. To this end, powder and porous ceria samples are tested with TGA (thermogravimetric analysis) to ascertain their maximum fuel production potential from the CeO2 → CeO2−δ cycle. A maximum value of the non-stoichiometric reduction factor δ of ceria powder was 0.0383 at 1450 °C. The reactive stability of a synthesized porous ceria sample is then observed with carbon dioxide splitting at 1100 °C and thermal reduction at 1450 °C. Approximately 86.4% of initial fuel production is retained after 2000 cycles, and the mean value of δ is found to be 0.0197. SEM (scanning electron microscopy) imaging suggests that the porous ceria structure is retained over 2000 cycles despite apparent loss of some surface area. EDS (energy dispersive x-ray spectroscopy) line scans show that oxidation of porous ceria becomes increasingly homogenous throughout the bulk material over an increasing number of cycles. Significant retention of reactivity and porous structure demonstrates the potential of porous ceria for use in a commercial thermochemical reactor. •Ceria is explored for solar fuel production through a CO2-splitting redox cycle.•Stability of porous ceria is observed with carbon dioxide splitting at 1100 °C.•Greater than 86% of initial fuel production is retained after 2000 cycles.•SEM imaging reveals that the porous structure is retained over 2000 cycles.•Findings reveal that ceria structures are compatible with actual implementation.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2015.06.041</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2015-09, Vol.89 (C), p.924-931
issn 0360-5442
language eng
recordid cdi_osti_scitechconnect_1247782
source Access via ScienceDirect (Elsevier)
subjects Carbon dioxide
Ceria
Cerium oxide
CO2 splitting
Fuel production
Oxides
Reactive stability
Scanning electron microscopy
Solar fuels
Stability
Surface area
Thermal reduction
Thermochemical cycle
title Investigation of long term reactive stability of ceria for use in solar thermochemical cycles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A57%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20long%20term%20reactive%20stability%20of%20ceria%20for%20use%20in%20solar%20thermochemical%20cycles&rft.jtitle=Energy%20(Oxford)&rft.au=Rhodes,%20Nathan%20R.&rft.date=2015-09-01&rft.volume=89&rft.issue=C&rft.spage=924&rft.epage=931&rft.pages=924-931&rft.issn=0360-5442&rft_id=info:doi/10.1016/j.energy.2015.06.041&rft_dat=%3Cproquest_osti_%3E1765966261%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765966261&rft_id=info:pmid/&rft_els_id=S0360544215007975&rfr_iscdi=true