Bayesian estimation of parametric uncertainties, quantification and reduction using optimal design of experiments for CO2 adsorption on amine sorbents

•Bayesian estimation and quantification of CO2 adsorption isotherm parameters.•Parallel computation in uncertainty propagation and utility function evaluation.•Demonstrated optimal experimental design to reduce prediction uncertainty.•Integrated UQ framework developed in Python. Uncertainty quantifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & chemical engineering 2015-10, Vol.81 (C), p.376-388
Hauptverfasser: Kalyanaraman, Jayashree, Fan, Yanfang, Labreche, Ying, Lively, Ryan P., Kawajiri, Yoshiaki, Realff, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 388
container_issue C
container_start_page 376
container_title Computers & chemical engineering
container_volume 81
creator Kalyanaraman, Jayashree
Fan, Yanfang
Labreche, Ying
Lively, Ryan P.
Kawajiri, Yoshiaki
Realff, Matthew J.
description •Bayesian estimation and quantification of CO2 adsorption isotherm parameters.•Parallel computation in uncertainty propagation and utility function evaluation.•Demonstrated optimal experimental design to reduce prediction uncertainty.•Integrated UQ framework developed in Python. Uncertainty quantification plays a significant role in establishing reliability of mathematical models, while applying to process optimization or technology feasibility studies. Uncertainties, in general, could occur either in mathematical model or in model parameters. In this work, process of CO2 adsorption on amine sorbents, which are loaded in hollow fibers is studied to quantify the impact of uncertainties in the adsorption isotherm parameters on the model prediction. The process design variable that is most closely related to the process economics is the CO2 sorption capacity, whose uncertainty is investigated. We apply Bayesian analysis and determine a utility function surface corresponding to the value of information gained by the respective experimental design point. It is demonstrated that performing an experiment at a condition with a higher utility has a higher reduction of design variable prediction uncertainty compared to choosing a design point at a lower utility.
doi_str_mv 10.1016/j.compchemeng.2015.04.028
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1247068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0098135415001295</els_id><sourcerecordid>1744729529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-feacff769d0fe3d642e7a0b39a419bd5f146015ebd014f4ac9fe19fc1a9204723</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhS0EEpfCO7hdsSDpOHF-vIQrWipV6gbWlq89vvXVjZ3aDqIvwvPiNCxYsvKPznxzZg4hlwxqBqy_PtU6TLN-xAn9sW6AdTXwGprxFdmxcWgr3g7da7IDEGPF2o6_Je9SOgFAw8dxR35_Uc-YnPIUU3aTyi54GiydVVQT5ug0XbzGmJXz2WH6RJ8WVW7W6U2rvKERzaJfXkty_kjDvKLO1BTy8QWHv2aMrnjMidoQ6f6hocqkEOetYeFMziMtP4dV9J68seqc8MPf84L8uPn6ff-tun-4vdt_vq90D12uLCpt7dALAxZb0_MGBwWHVijOxMF0lvG-rAQPBhi3XGlhkQmrmRIN8KFpL8jVxg1lepm0y6gfdfAedZas4QP0YxF93ERzDE9L2ZOcXNJ4PiuPYUmSDbywRNeIIhWbVMeQUkQr5zK2is-SgVwDkyf5T2ByDUwClyWwUrvfarEM_NNhXP1gWb5xcbVjgvsPyh-ZiqmN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744729529</pqid></control><display><type>article</type><title>Bayesian estimation of parametric uncertainties, quantification and reduction using optimal design of experiments for CO2 adsorption on amine sorbents</title><source>Elsevier ScienceDirect Journals</source><creator>Kalyanaraman, Jayashree ; Fan, Yanfang ; Labreche, Ying ; Lively, Ryan P. ; Kawajiri, Yoshiaki ; Realff, Matthew J.</creator><creatorcontrib>Kalyanaraman, Jayashree ; Fan, Yanfang ; Labreche, Ying ; Lively, Ryan P. ; Kawajiri, Yoshiaki ; Realff, Matthew J.</creatorcontrib><description>•Bayesian estimation and quantification of CO2 adsorption isotherm parameters.•Parallel computation in uncertainty propagation and utility function evaluation.•Demonstrated optimal experimental design to reduce prediction uncertainty.•Integrated UQ framework developed in Python. Uncertainty quantification plays a significant role in establishing reliability of mathematical models, while applying to process optimization or technology feasibility studies. Uncertainties, in general, could occur either in mathematical model or in model parameters. In this work, process of CO2 adsorption on amine sorbents, which are loaded in hollow fibers is studied to quantify the impact of uncertainties in the adsorption isotherm parameters on the model prediction. The process design variable that is most closely related to the process economics is the CO2 sorption capacity, whose uncertainty is investigated. We apply Bayesian analysis and determine a utility function surface corresponding to the value of information gained by the respective experimental design point. It is demonstrated that performing an experiment at a condition with a higher utility has a higher reduction of design variable prediction uncertainty compared to choosing a design point at a lower utility.</description><identifier>ISSN: 0098-1354</identifier><identifier>EISSN: 1873-4375</identifier><identifier>DOI: 10.1016/j.compchemeng.2015.04.028</identifier><language>eng</language><publisher>United Kingdom: Elsevier Ltd</publisher><subject>Adaptive metropolis ; Adsorption ; Bayesian inference ; Carbon dioxide ; CO2 adsorption ; Design engineering ; Mathematical models ; Optimal experimental design ; Parallel propagation ; Reduction ; Surface chemistry ; Uncertainty ; Utilities</subject><ispartof>Computers &amp; chemical engineering, 2015-10, Vol.81 (C), p.376-388</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-feacff769d0fe3d642e7a0b39a419bd5f146015ebd014f4ac9fe19fc1a9204723</citedby><cites>FETCH-LOGICAL-c605t-feacff769d0fe3d642e7a0b39a419bd5f146015ebd014f4ac9fe19fc1a9204723</cites><orcidid>0000-0003-3531-2015 ; 0000000335312015</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0098135415001295$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1247068$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kalyanaraman, Jayashree</creatorcontrib><creatorcontrib>Fan, Yanfang</creatorcontrib><creatorcontrib>Labreche, Ying</creatorcontrib><creatorcontrib>Lively, Ryan P.</creatorcontrib><creatorcontrib>Kawajiri, Yoshiaki</creatorcontrib><creatorcontrib>Realff, Matthew J.</creatorcontrib><title>Bayesian estimation of parametric uncertainties, quantification and reduction using optimal design of experiments for CO2 adsorption on amine sorbents</title><title>Computers &amp; chemical engineering</title><description>•Bayesian estimation and quantification of CO2 adsorption isotherm parameters.•Parallel computation in uncertainty propagation and utility function evaluation.•Demonstrated optimal experimental design to reduce prediction uncertainty.•Integrated UQ framework developed in Python. Uncertainty quantification plays a significant role in establishing reliability of mathematical models, while applying to process optimization or technology feasibility studies. Uncertainties, in general, could occur either in mathematical model or in model parameters. In this work, process of CO2 adsorption on amine sorbents, which are loaded in hollow fibers is studied to quantify the impact of uncertainties in the adsorption isotherm parameters on the model prediction. The process design variable that is most closely related to the process economics is the CO2 sorption capacity, whose uncertainty is investigated. We apply Bayesian analysis and determine a utility function surface corresponding to the value of information gained by the respective experimental design point. It is demonstrated that performing an experiment at a condition with a higher utility has a higher reduction of design variable prediction uncertainty compared to choosing a design point at a lower utility.</description><subject>Adaptive metropolis</subject><subject>Adsorption</subject><subject>Bayesian inference</subject><subject>Carbon dioxide</subject><subject>CO2 adsorption</subject><subject>Design engineering</subject><subject>Mathematical models</subject><subject>Optimal experimental design</subject><subject>Parallel propagation</subject><subject>Reduction</subject><subject>Surface chemistry</subject><subject>Uncertainty</subject><subject>Utilities</subject><issn>0098-1354</issn><issn>1873-4375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1TAQhS0EEpfCO7hdsSDpOHF-vIQrWipV6gbWlq89vvXVjZ3aDqIvwvPiNCxYsvKPznxzZg4hlwxqBqy_PtU6TLN-xAn9sW6AdTXwGprxFdmxcWgr3g7da7IDEGPF2o6_Je9SOgFAw8dxR35_Uc-YnPIUU3aTyi54GiydVVQT5ug0XbzGmJXz2WH6RJ8WVW7W6U2rvKERzaJfXkty_kjDvKLO1BTy8QWHv2aMrnjMidoQ6f6hocqkEOetYeFMziMtP4dV9J68seqc8MPf84L8uPn6ff-tun-4vdt_vq90D12uLCpt7dALAxZb0_MGBwWHVijOxMF0lvG-rAQPBhi3XGlhkQmrmRIN8KFpL8jVxg1lepm0y6gfdfAedZas4QP0YxF93ERzDE9L2ZOcXNJ4PiuPYUmSDbywRNeIIhWbVMeQUkQr5zK2is-SgVwDkyf5T2ByDUwClyWwUrvfarEM_NNhXP1gWb5xcbVjgvsPyh-ZiqmN</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Kalyanaraman, Jayashree</creator><creator>Fan, Yanfang</creator><creator>Labreche, Ying</creator><creator>Lively, Ryan P.</creator><creator>Kawajiri, Yoshiaki</creator><creator>Realff, Matthew J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3531-2015</orcidid><orcidid>https://orcid.org/0000000335312015</orcidid></search><sort><creationdate>20151001</creationdate><title>Bayesian estimation of parametric uncertainties, quantification and reduction using optimal design of experiments for CO2 adsorption on amine sorbents</title><author>Kalyanaraman, Jayashree ; Fan, Yanfang ; Labreche, Ying ; Lively, Ryan P. ; Kawajiri, Yoshiaki ; Realff, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-feacff769d0fe3d642e7a0b39a419bd5f146015ebd014f4ac9fe19fc1a9204723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive metropolis</topic><topic>Adsorption</topic><topic>Bayesian inference</topic><topic>Carbon dioxide</topic><topic>CO2 adsorption</topic><topic>Design engineering</topic><topic>Mathematical models</topic><topic>Optimal experimental design</topic><topic>Parallel propagation</topic><topic>Reduction</topic><topic>Surface chemistry</topic><topic>Uncertainty</topic><topic>Utilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalyanaraman, Jayashree</creatorcontrib><creatorcontrib>Fan, Yanfang</creatorcontrib><creatorcontrib>Labreche, Ying</creatorcontrib><creatorcontrib>Lively, Ryan P.</creatorcontrib><creatorcontrib>Kawajiri, Yoshiaki</creatorcontrib><creatorcontrib>Realff, Matthew J.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Computers &amp; chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalyanaraman, Jayashree</au><au>Fan, Yanfang</au><au>Labreche, Ying</au><au>Lively, Ryan P.</au><au>Kawajiri, Yoshiaki</au><au>Realff, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian estimation of parametric uncertainties, quantification and reduction using optimal design of experiments for CO2 adsorption on amine sorbents</atitle><jtitle>Computers &amp; chemical engineering</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>81</volume><issue>C</issue><spage>376</spage><epage>388</epage><pages>376-388</pages><issn>0098-1354</issn><eissn>1873-4375</eissn><abstract>•Bayesian estimation and quantification of CO2 adsorption isotherm parameters.•Parallel computation in uncertainty propagation and utility function evaluation.•Demonstrated optimal experimental design to reduce prediction uncertainty.•Integrated UQ framework developed in Python. Uncertainty quantification plays a significant role in establishing reliability of mathematical models, while applying to process optimization or technology feasibility studies. Uncertainties, in general, could occur either in mathematical model or in model parameters. In this work, process of CO2 adsorption on amine sorbents, which are loaded in hollow fibers is studied to quantify the impact of uncertainties in the adsorption isotherm parameters on the model prediction. The process design variable that is most closely related to the process economics is the CO2 sorption capacity, whose uncertainty is investigated. We apply Bayesian analysis and determine a utility function surface corresponding to the value of information gained by the respective experimental design point. It is demonstrated that performing an experiment at a condition with a higher utility has a higher reduction of design variable prediction uncertainty compared to choosing a design point at a lower utility.</abstract><cop>United Kingdom</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compchemeng.2015.04.028</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3531-2015</orcidid><orcidid>https://orcid.org/0000000335312015</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-1354
ispartof Computers & chemical engineering, 2015-10, Vol.81 (C), p.376-388
issn 0098-1354
1873-4375
language eng
recordid cdi_osti_scitechconnect_1247068
source Elsevier ScienceDirect Journals
subjects Adaptive metropolis
Adsorption
Bayesian inference
Carbon dioxide
CO2 adsorption
Design engineering
Mathematical models
Optimal experimental design
Parallel propagation
Reduction
Surface chemistry
Uncertainty
Utilities
title Bayesian estimation of parametric uncertainties, quantification and reduction using optimal design of experiments for CO2 adsorption on amine sorbents
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T19%3A22%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20estimation%20of%20parametric%20uncertainties,%20quantification%20and%20reduction%20using%20optimal%20design%20of%20experiments%20for%20CO2%20adsorption%20on%20amine%20sorbents&rft.jtitle=Computers%20&%20chemical%20engineering&rft.au=Kalyanaraman,%20Jayashree&rft.date=2015-10-01&rft.volume=81&rft.issue=C&rft.spage=376&rft.epage=388&rft.pages=376-388&rft.issn=0098-1354&rft.eissn=1873-4375&rft_id=info:doi/10.1016/j.compchemeng.2015.04.028&rft_dat=%3Cproquest_osti_%3E1744729529%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1744729529&rft_id=info:pmid/&rft_els_id=S0098135415001295&rfr_iscdi=true