EnKF coupled with groundwater flow moment equations applied to Lauswiesen aquifer, Germany

•Traditional EnKF assimilation requires computationally intensive MC simulations.•Coupling EnKF with moment equations (MEs) eliminates this need and inbreeding.•Here we use ME-based EnKF to estimate aquifer transmissivities at a field site.•ME-based results compare favorably with those of numerous M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2015-02, Vol.521 (C), p.205-216
Hauptverfasser: Panzeri, M., Riva, M., Guadagnini, A., Neuman, S.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 216
container_issue C
container_start_page 205
container_title Journal of hydrology (Amsterdam)
container_volume 521
creator Panzeri, M.
Riva, M.
Guadagnini, A.
Neuman, S.P.
description •Traditional EnKF assimilation requires computationally intensive MC simulations.•Coupling EnKF with moment equations (MEs) eliminates this need and inbreeding.•Here we use ME-based EnKF to estimate aquifer transmissivities at a field site.•ME-based results compare favorably with those of numerous MC simulations.•As such, ME-based EnKF requires a lesser amount of computer time. We describe a field application of a new data assimilation method recently proposed by Panzeri et al. (2013, 2014). The method couples a modified Ensemble Kalman Filter (EnKF) algorithm with stochastic moment equations (MEs) governing space–time variations of (theoretical ensemble) mean and covariance values of groundwater flow state variables (hydraulic heads and fluxes). Whereas traditional EnKF entails Monte Carlo (MC) simulations and suffers from inbreeding, our approach obviates both. Synthetic case studies have shown the ME-based approach to be computationally efficient and accurate when compared to MC-based results. Here we use our ME-based method to assimilate drawdown data recorded during cross-hole pumping tests in the heterogeneous alluvial Lauswiesen aquifer near Tübingen, Germany. Our results include an estimate of log transmissivity distribution throughout the aquifer and corresponding measures of estimation error. We validate our calibrated model by using it to predict drawdowns recorded during another pumping test at the site and compare its performance with that of standard MC-based EnKF.
doi_str_mv 10.1016/j.jhydrol.2014.11.057
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1246426</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022169414009792</els_id><sourcerecordid>1668252958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-afcb71562d2b056437e4eea561f055ccc469845d5cdc7f2856b4740513a6548c3</originalsourceid><addsrcrecordid>eNqNkU2P0zAQhi0EEmXhJyBZnDiQrMfxR3JCaLW7oK3EBS5cLNeZUFeJndoOVf89qbp3mMtcnvfVaB5C3gOrgYG6PdSH_blPcaw5A1ED1EzqF2QDre4qrpl-STaMcV6B6sRr8ibnA1unacSG_LoPTw_UxWUesacnX_b0d4pL6E-2YKLDGE90ihOGQvG42OJjyNTO8-hXvES6tUs-ecwYqD0ufsD0iT5immw4vyWvBjtmfPe8b8jPh_sfd1-r7ffHb3dftpUToiuVHdxOg1S85zsmlWg0CkQrFQxMSuecUF0rZC9d7_TAW6l2QgsmobFKitY1N-TDtTfm4k12vqDbuxgCumKACyW4WqGPV2hO8bhgLmby2eE42oBxyQaU1p3oOmD_gaqWS97JdkXlFXUp5pxwMHPyk01nA8xc3JiDeXZjLm4MgFndrLnP1xyuf_njMV3OxuCw9-lydR_9Pxr-Am7_mkY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668252958</pqid></control><display><type>article</type><title>EnKF coupled with groundwater flow moment equations applied to Lauswiesen aquifer, Germany</title><source>Elsevier ScienceDirect Journals</source><creator>Panzeri, M. ; Riva, M. ; Guadagnini, A. ; Neuman, S.P.</creator><creatorcontrib>Panzeri, M. ; Riva, M. ; Guadagnini, A. ; Neuman, S.P.</creatorcontrib><description>•Traditional EnKF assimilation requires computationally intensive MC simulations.•Coupling EnKF with moment equations (MEs) eliminates this need and inbreeding.•Here we use ME-based EnKF to estimate aquifer transmissivities at a field site.•ME-based results compare favorably with those of numerous MC simulations.•As such, ME-based EnKF requires a lesser amount of computer time. We describe a field application of a new data assimilation method recently proposed by Panzeri et al. (2013, 2014). The method couples a modified Ensemble Kalman Filter (EnKF) algorithm with stochastic moment equations (MEs) governing space–time variations of (theoretical ensemble) mean and covariance values of groundwater flow state variables (hydraulic heads and fluxes). Whereas traditional EnKF entails Monte Carlo (MC) simulations and suffers from inbreeding, our approach obviates both. Synthetic case studies have shown the ME-based approach to be computationally efficient and accurate when compared to MC-based results. Here we use our ME-based method to assimilate drawdown data recorded during cross-hole pumping tests in the heterogeneous alluvial Lauswiesen aquifer near Tübingen, Germany. Our results include an estimate of log transmissivity distribution throughout the aquifer and corresponding measures of estimation error. We validate our calibrated model by using it to predict drawdowns recorded during another pumping test at the site and compare its performance with that of standard MC-based EnKF.</description><identifier>ISSN: 0022-1694</identifier><identifier>EISSN: 1879-2707</identifier><identifier>DOI: 10.1016/j.jhydrol.2014.11.057</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Aquifer characterization ; Aquifers ; Computer simulation ; Cross-hole pumping tests ; Data assimilation ; Ensemble Kalman Filter ; Field-scale application ; Ground-water flow ; Hydrology ; Mathematical analysis ; Mathematical models ; Monte Carlo methods ; Pumping ; Stochastic moment equations</subject><ispartof>Journal of hydrology (Amsterdam), 2015-02, Vol.521 (C), p.205-216</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-afcb71562d2b056437e4eea561f055ccc469845d5cdc7f2856b4740513a6548c3</citedby><cites>FETCH-LOGICAL-c449t-afcb71562d2b056437e4eea561f055ccc469845d5cdc7f2856b4740513a6548c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0022169414009792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1246426$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Panzeri, M.</creatorcontrib><creatorcontrib>Riva, M.</creatorcontrib><creatorcontrib>Guadagnini, A.</creatorcontrib><creatorcontrib>Neuman, S.P.</creatorcontrib><title>EnKF coupled with groundwater flow moment equations applied to Lauswiesen aquifer, Germany</title><title>Journal of hydrology (Amsterdam)</title><description>•Traditional EnKF assimilation requires computationally intensive MC simulations.•Coupling EnKF with moment equations (MEs) eliminates this need and inbreeding.•Here we use ME-based EnKF to estimate aquifer transmissivities at a field site.•ME-based results compare favorably with those of numerous MC simulations.•As such, ME-based EnKF requires a lesser amount of computer time. We describe a field application of a new data assimilation method recently proposed by Panzeri et al. (2013, 2014). The method couples a modified Ensemble Kalman Filter (EnKF) algorithm with stochastic moment equations (MEs) governing space–time variations of (theoretical ensemble) mean and covariance values of groundwater flow state variables (hydraulic heads and fluxes). Whereas traditional EnKF entails Monte Carlo (MC) simulations and suffers from inbreeding, our approach obviates both. Synthetic case studies have shown the ME-based approach to be computationally efficient and accurate when compared to MC-based results. Here we use our ME-based method to assimilate drawdown data recorded during cross-hole pumping tests in the heterogeneous alluvial Lauswiesen aquifer near Tübingen, Germany. Our results include an estimate of log transmissivity distribution throughout the aquifer and corresponding measures of estimation error. We validate our calibrated model by using it to predict drawdowns recorded during another pumping test at the site and compare its performance with that of standard MC-based EnKF.</description><subject>Algorithms</subject><subject>Aquifer characterization</subject><subject>Aquifers</subject><subject>Computer simulation</subject><subject>Cross-hole pumping tests</subject><subject>Data assimilation</subject><subject>Ensemble Kalman Filter</subject><subject>Field-scale application</subject><subject>Ground-water flow</subject><subject>Hydrology</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo methods</subject><subject>Pumping</subject><subject>Stochastic moment equations</subject><issn>0022-1694</issn><issn>1879-2707</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU2P0zAQhi0EEmXhJyBZnDiQrMfxR3JCaLW7oK3EBS5cLNeZUFeJndoOVf89qbp3mMtcnvfVaB5C3gOrgYG6PdSH_blPcaw5A1ED1EzqF2QDre4qrpl-STaMcV6B6sRr8ibnA1unacSG_LoPTw_UxWUesacnX_b0d4pL6E-2YKLDGE90ihOGQvG42OJjyNTO8-hXvES6tUs-ecwYqD0ufsD0iT5immw4vyWvBjtmfPe8b8jPh_sfd1-r7ffHb3dftpUToiuVHdxOg1S85zsmlWg0CkQrFQxMSuecUF0rZC9d7_TAW6l2QgsmobFKitY1N-TDtTfm4k12vqDbuxgCumKACyW4WqGPV2hO8bhgLmby2eE42oBxyQaU1p3oOmD_gaqWS97JdkXlFXUp5pxwMHPyk01nA8xc3JiDeXZjLm4MgFndrLnP1xyuf_njMV3OxuCw9-lydR_9Pxr-Am7_mkY</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Panzeri, M.</creator><creator>Riva, M.</creator><creator>Guadagnini, A.</creator><creator>Neuman, S.P.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>OTOTI</scope></search><sort><creationdate>201502</creationdate><title>EnKF coupled with groundwater flow moment equations applied to Lauswiesen aquifer, Germany</title><author>Panzeri, M. ; Riva, M. ; Guadagnini, A. ; Neuman, S.P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-afcb71562d2b056437e4eea561f055ccc469845d5cdc7f2856b4740513a6548c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Aquifer characterization</topic><topic>Aquifers</topic><topic>Computer simulation</topic><topic>Cross-hole pumping tests</topic><topic>Data assimilation</topic><topic>Ensemble Kalman Filter</topic><topic>Field-scale application</topic><topic>Ground-water flow</topic><topic>Hydrology</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo methods</topic><topic>Pumping</topic><topic>Stochastic moment equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panzeri, M.</creatorcontrib><creatorcontrib>Riva, M.</creatorcontrib><creatorcontrib>Guadagnini, A.</creatorcontrib><creatorcontrib>Neuman, S.P.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Journal of hydrology (Amsterdam)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panzeri, M.</au><au>Riva, M.</au><au>Guadagnini, A.</au><au>Neuman, S.P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EnKF coupled with groundwater flow moment equations applied to Lauswiesen aquifer, Germany</atitle><jtitle>Journal of hydrology (Amsterdam)</jtitle><date>2015-02</date><risdate>2015</risdate><volume>521</volume><issue>C</issue><spage>205</spage><epage>216</epage><pages>205-216</pages><issn>0022-1694</issn><eissn>1879-2707</eissn><abstract>•Traditional EnKF assimilation requires computationally intensive MC simulations.•Coupling EnKF with moment equations (MEs) eliminates this need and inbreeding.•Here we use ME-based EnKF to estimate aquifer transmissivities at a field site.•ME-based results compare favorably with those of numerous MC simulations.•As such, ME-based EnKF requires a lesser amount of computer time. We describe a field application of a new data assimilation method recently proposed by Panzeri et al. (2013, 2014). The method couples a modified Ensemble Kalman Filter (EnKF) algorithm with stochastic moment equations (MEs) governing space–time variations of (theoretical ensemble) mean and covariance values of groundwater flow state variables (hydraulic heads and fluxes). Whereas traditional EnKF entails Monte Carlo (MC) simulations and suffers from inbreeding, our approach obviates both. Synthetic case studies have shown the ME-based approach to be computationally efficient and accurate when compared to MC-based results. Here we use our ME-based method to assimilate drawdown data recorded during cross-hole pumping tests in the heterogeneous alluvial Lauswiesen aquifer near Tübingen, Germany. Our results include an estimate of log transmissivity distribution throughout the aquifer and corresponding measures of estimation error. We validate our calibrated model by using it to predict drawdowns recorded during another pumping test at the site and compare its performance with that of standard MC-based EnKF.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jhydrol.2014.11.057</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1694
ispartof Journal of hydrology (Amsterdam), 2015-02, Vol.521 (C), p.205-216
issn 0022-1694
1879-2707
language eng
recordid cdi_osti_scitechconnect_1246426
source Elsevier ScienceDirect Journals
subjects Algorithms
Aquifer characterization
Aquifers
Computer simulation
Cross-hole pumping tests
Data assimilation
Ensemble Kalman Filter
Field-scale application
Ground-water flow
Hydrology
Mathematical analysis
Mathematical models
Monte Carlo methods
Pumping
Stochastic moment equations
title EnKF coupled with groundwater flow moment equations applied to Lauswiesen aquifer, Germany
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EnKF%20coupled%20with%20groundwater%20flow%20moment%20equations%20applied%20to%20Lauswiesen%20aquifer,%20Germany&rft.jtitle=Journal%20of%20hydrology%20(Amsterdam)&rft.au=Panzeri,%20M.&rft.date=2015-02&rft.volume=521&rft.issue=C&rft.spage=205&rft.epage=216&rft.pages=205-216&rft.issn=0022-1694&rft.eissn=1879-2707&rft_id=info:doi/10.1016/j.jhydrol.2014.11.057&rft_dat=%3Cproquest_osti_%3E1668252958%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1668252958&rft_id=info:pmid/&rft_els_id=S0022169414009792&rfr_iscdi=true