Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices

We explore the possibility of multi‐site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2016-08, Vol.137 (2), p.214-237
Hauptverfasser: Cuevas-Maraver, Jesús, Kevrekidis, Panayotis G., Pelinovsky, Dmitry E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 237
container_issue 2
container_start_page 214
container_title Studies in applied mathematics (Cambridge)
container_volume 137
creator Cuevas-Maraver, Jesús
Kevrekidis, Panayotis G.
Pelinovsky, Dmitry E.
description We explore the possibility of multi‐site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (ϕ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi‐site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi‐site breather states are observed to be nonlinearly stable.
doi_str_mv 10.1111/sapm.12107
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1246360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4143682881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4027-d3f55c3f37dca339e9da182c32c9ac6b7c5ab15e2125e62e52068ada767b4e703</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqxV-w6E3Ymo9N0j1q0bbYqqAieAlpdhaj26QmKeq_d-uqR-cyl-cdhhehQ4IHpJ3TqFfLAaEEyy3UI4WQeclLvI16GFOaU07FLtqL8QVjTCTHPTS59q6xDnTIpi4mvbCNTRZi5utsvm6Sze9sguw8gE7PEGJmXXbVgHX52IfKu2ymU7IG4j7aqXUT4eBn99HD5cX9aJLPbsbT0dksNwWmMq9YzblhNZOV0YyVUFaaDKlh1JTaiIU0XC8IB0ooB0GBUyyGutJSyEUBErM-Ouru-pisiqb9zjwb7xyYpAgtBBMbdNyhVfBva4hJvfh1cO1figwJ5oyLYtiqk06Z4GMMUKtVsEsdPhXBalOn2tSpvutsMenwu23g8x-p7s5u57-ZvMvYmODjL6PDqxKSSa4er8dqgmfl6EneqxH7AjY2hYk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810535648</pqid></control><display><type>article</type><title>Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Cuevas-Maraver, Jesús ; Kevrekidis, Panayotis G. ; Pelinovsky, Dmitry E.</creator><creatorcontrib>Cuevas-Maraver, Jesús ; Kevrekidis, Panayotis G. ; Pelinovsky, Dmitry E. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We explore the possibility of multi‐site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (ϕ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi‐site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi‐site breather states are observed to be nonlinearly stable.</description><identifier>ISSN: 0022-2526</identifier><identifier>EISSN: 1467-9590</identifier><identifier>DOI: 10.1111/sapm.12107</identifier><language>eng</language><publisher>Cambridge: Blackwell Publishing Ltd</publisher><subject>Eigenvalues ; Lattice theory ; Mathematical analysis ; Mathematics ; MATHEMATICS AND COMPUTING ; Nonlinear systems ; Studies</subject><ispartof>Studies in applied mathematics (Cambridge), 2016-08, Vol.137 (2), p.214-237</ispartof><rights>2015 Wiley Periodicals, Inc., A Wiley Company</rights><rights>2016 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4027-d3f55c3f37dca339e9da182c32c9ac6b7c5ab15e2125e62e52068ada767b4e703</citedby><cites>FETCH-LOGICAL-c4027-d3f55c3f37dca339e9da182c32c9ac6b7c5ab15e2125e62e52068ada767b4e703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsapm.12107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsapm.12107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1246360$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cuevas-Maraver, Jesús</creatorcontrib><creatorcontrib>Kevrekidis, Panayotis G.</creatorcontrib><creatorcontrib>Pelinovsky, Dmitry E.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices</title><title>Studies in applied mathematics (Cambridge)</title><addtitle>Studies in Applied Mathematics</addtitle><description>We explore the possibility of multi‐site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (ϕ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi‐site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi‐site breather states are observed to be nonlinearly stable.</description><subject>Eigenvalues</subject><subject>Lattice theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Nonlinear systems</subject><subject>Studies</subject><issn>0022-2526</issn><issn>1467-9590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqxV-w6E3Ymo9N0j1q0bbYqqAieAlpdhaj26QmKeq_d-uqR-cyl-cdhhehQ4IHpJ3TqFfLAaEEyy3UI4WQeclLvI16GFOaU07FLtqL8QVjTCTHPTS59q6xDnTIpi4mvbCNTRZi5utsvm6Sze9sguw8gE7PEGJmXXbVgHX52IfKu2ymU7IG4j7aqXUT4eBn99HD5cX9aJLPbsbT0dksNwWmMq9YzblhNZOV0YyVUFaaDKlh1JTaiIU0XC8IB0ooB0GBUyyGutJSyEUBErM-Ouru-pisiqb9zjwb7xyYpAgtBBMbdNyhVfBva4hJvfh1cO1figwJ5oyLYtiqk06Z4GMMUKtVsEsdPhXBalOn2tSpvutsMenwu23g8x-p7s5u57-ZvMvYmODjL6PDqxKSSa4er8dqgmfl6EneqxH7AjY2hYk</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Cuevas-Maraver, Jesús</creator><creator>Kevrekidis, Panayotis G.</creator><creator>Pelinovsky, Dmitry E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201608</creationdate><title>Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices</title><author>Cuevas-Maraver, Jesús ; Kevrekidis, Panayotis G. ; Pelinovsky, Dmitry E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4027-d3f55c3f37dca339e9da182c32c9ac6b7c5ab15e2125e62e52068ada767b4e703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Eigenvalues</topic><topic>Lattice theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Nonlinear systems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuevas-Maraver, Jesús</creatorcontrib><creatorcontrib>Kevrekidis, Panayotis G.</creatorcontrib><creatorcontrib>Pelinovsky, Dmitry E.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Studies in applied mathematics (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuevas-Maraver, Jesús</au><au>Kevrekidis, Panayotis G.</au><au>Pelinovsky, Dmitry E.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices</atitle><jtitle>Studies in applied mathematics (Cambridge)</jtitle><addtitle>Studies in Applied Mathematics</addtitle><date>2016-08</date><risdate>2016</risdate><volume>137</volume><issue>2</issue><spage>214</spage><epage>237</epage><pages>214-237</pages><issn>0022-2526</issn><eissn>1467-9590</eissn><abstract>We explore the possibility of multi‐site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (ϕ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi‐site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi‐site breather states are observed to be nonlinearly stable.</abstract><cop>Cambridge</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sapm.12107</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2526
ispartof Studies in applied mathematics (Cambridge), 2016-08, Vol.137 (2), p.214-237
issn 0022-2526
1467-9590
language eng
recordid cdi_osti_scitechconnect_1246360
source Business Source Complete; Wiley Online Library All Journals
subjects Eigenvalues
Lattice theory
Mathematical analysis
Mathematics
MATHEMATICS AND COMPUTING
Nonlinear systems
Studies
title Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Instabilities%20of%20Multi-Site%20Breathers%20in%20Klein-Gordon%20Lattices&rft.jtitle=Studies%20in%20applied%20mathematics%20(Cambridge)&rft.au=Cuevas-Maraver,%20Jes%C3%BAs&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2016-08&rft.volume=137&rft.issue=2&rft.spage=214&rft.epage=237&rft.pages=214-237&rft.issn=0022-2526&rft.eissn=1467-9590&rft_id=info:doi/10.1111/sapm.12107&rft_dat=%3Cproquest_osti_%3E4143682881%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810535648&rft_id=info:pmid/&rfr_iscdi=true