Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices
We explore the possibility of multi‐site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode...
Gespeichert in:
Veröffentlicht in: | Studies in applied mathematics (Cambridge) 2016-08, Vol.137 (2), p.214-237 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 237 |
---|---|
container_issue | 2 |
container_start_page | 214 |
container_title | Studies in applied mathematics (Cambridge) |
container_volume | 137 |
creator | Cuevas-Maraver, Jesús Kevrekidis, Panayotis G. Pelinovsky, Dmitry E. |
description | We explore the possibility of multi‐site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (ϕ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi‐site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi‐site breather states are observed to be nonlinearly stable. |
doi_str_mv | 10.1111/sapm.12107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1246360</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4143682881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4027-d3f55c3f37dca339e9da182c32c9ac6b7c5ab15e2125e62e52068ada767b4e703</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqxV-w6E3Ymo9N0j1q0bbYqqAieAlpdhaj26QmKeq_d-uqR-cyl-cdhhehQ4IHpJ3TqFfLAaEEyy3UI4WQeclLvI16GFOaU07FLtqL8QVjTCTHPTS59q6xDnTIpi4mvbCNTRZi5utsvm6Sze9sguw8gE7PEGJmXXbVgHX52IfKu2ymU7IG4j7aqXUT4eBn99HD5cX9aJLPbsbT0dksNwWmMq9YzblhNZOV0YyVUFaaDKlh1JTaiIU0XC8IB0ooB0GBUyyGutJSyEUBErM-Ouru-pisiqb9zjwb7xyYpAgtBBMbdNyhVfBva4hJvfh1cO1figwJ5oyLYtiqk06Z4GMMUKtVsEsdPhXBalOn2tSpvutsMenwu23g8x-p7s5u57-ZvMvYmODjL6PDqxKSSa4er8dqgmfl6EneqxH7AjY2hYk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1810535648</pqid></control><display><type>article</type><title>Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices</title><source>Business Source Complete</source><source>Wiley Online Library All Journals</source><creator>Cuevas-Maraver, Jesús ; Kevrekidis, Panayotis G. ; Pelinovsky, Dmitry E.</creator><creatorcontrib>Cuevas-Maraver, Jesús ; Kevrekidis, Panayotis G. ; Pelinovsky, Dmitry E. ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>We explore the possibility of multi‐site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (ϕ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi‐site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi‐site breather states are observed to be nonlinearly stable.</description><identifier>ISSN: 0022-2526</identifier><identifier>EISSN: 1467-9590</identifier><identifier>DOI: 10.1111/sapm.12107</identifier><language>eng</language><publisher>Cambridge: Blackwell Publishing Ltd</publisher><subject>Eigenvalues ; Lattice theory ; Mathematical analysis ; Mathematics ; MATHEMATICS AND COMPUTING ; Nonlinear systems ; Studies</subject><ispartof>Studies in applied mathematics (Cambridge), 2016-08, Vol.137 (2), p.214-237</ispartof><rights>2015 Wiley Periodicals, Inc., A Wiley Company</rights><rights>2016 Wiley Periodicals, Inc., A Wiley Company</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4027-d3f55c3f37dca339e9da182c32c9ac6b7c5ab15e2125e62e52068ada767b4e703</citedby><cites>FETCH-LOGICAL-c4027-d3f55c3f37dca339e9da182c32c9ac6b7c5ab15e2125e62e52068ada767b4e703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsapm.12107$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsapm.12107$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,315,781,785,886,1418,27929,27930,45579,45580</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1246360$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Cuevas-Maraver, Jesús</creatorcontrib><creatorcontrib>Kevrekidis, Panayotis G.</creatorcontrib><creatorcontrib>Pelinovsky, Dmitry E.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices</title><title>Studies in applied mathematics (Cambridge)</title><addtitle>Studies in Applied Mathematics</addtitle><description>We explore the possibility of multi‐site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (ϕ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi‐site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi‐site breather states are observed to be nonlinearly stable.</description><subject>Eigenvalues</subject><subject>Lattice theory</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>Nonlinear systems</subject><subject>Studies</subject><issn>0022-2526</issn><issn>1467-9590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqxV-w6E3Ymo9N0j1q0bbYqqAieAlpdhaj26QmKeq_d-uqR-cyl-cdhhehQ4IHpJ3TqFfLAaEEyy3UI4WQeclLvI16GFOaU07FLtqL8QVjTCTHPTS59q6xDnTIpi4mvbCNTRZi5utsvm6Sze9sguw8gE7PEGJmXXbVgHX52IfKu2ymU7IG4j7aqXUT4eBn99HD5cX9aJLPbsbT0dksNwWmMq9YzblhNZOV0YyVUFaaDKlh1JTaiIU0XC8IB0ooB0GBUyyGutJSyEUBErM-Ouru-pisiqb9zjwb7xyYpAgtBBMbdNyhVfBva4hJvfh1cO1figwJ5oyLYtiqk06Z4GMMUKtVsEsdPhXBalOn2tSpvutsMenwu23g8x-p7s5u57-ZvMvYmODjL6PDqxKSSa4er8dqgmfl6EneqxH7AjY2hYk</recordid><startdate>201608</startdate><enddate>201608</enddate><creator>Cuevas-Maraver, Jesús</creator><creator>Kevrekidis, Panayotis G.</creator><creator>Pelinovsky, Dmitry E.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201608</creationdate><title>Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices</title><author>Cuevas-Maraver, Jesús ; Kevrekidis, Panayotis G. ; Pelinovsky, Dmitry E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4027-d3f55c3f37dca339e9da182c32c9ac6b7c5ab15e2125e62e52068ada767b4e703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Eigenvalues</topic><topic>Lattice theory</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>Nonlinear systems</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuevas-Maraver, Jesús</creatorcontrib><creatorcontrib>Kevrekidis, Panayotis G.</creatorcontrib><creatorcontrib>Pelinovsky, Dmitry E.</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Studies in applied mathematics (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuevas-Maraver, Jesús</au><au>Kevrekidis, Panayotis G.</au><au>Pelinovsky, Dmitry E.</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices</atitle><jtitle>Studies in applied mathematics (Cambridge)</jtitle><addtitle>Studies in Applied Mathematics</addtitle><date>2016-08</date><risdate>2016</risdate><volume>137</volume><issue>2</issue><spage>214</spage><epage>237</epage><pages>214-237</pages><issn>0022-2526</issn><eissn>1467-9590</eissn><abstract>We explore the possibility of multi‐site breather states in a nonlinear Klein–Gordon lattice to become nonlinearly unstable, even if they are found to be spectrally stable. The mechanism for this nonlinear instability is through the resonance with the wave continuum of a multiple of an internal mode eigenfrequency in the linearization of excited breather states. For the nonlinear instability, the internal mode must have its Krein signature opposite to that of the wave continuum. This mechanism is not only theoretically proposed, but also numerically corroborated through two concrete examples of the Klein–Gordon lattice with a soft (Morse) and a hard (ϕ4) potential. Compared to the case of the nonlinear Schrödinger lattice, the Krein signature of the internal mode relative to that of the wave continuum may change depending on the period of the multi‐site breather state. For the periods for which the Krein signatures of the internal mode and the wave continuum coincide, multi‐site breather states are observed to be nonlinearly stable.</abstract><cop>Cambridge</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sapm.12107</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2526 |
ispartof | Studies in applied mathematics (Cambridge), 2016-08, Vol.137 (2), p.214-237 |
issn | 0022-2526 1467-9590 |
language | eng |
recordid | cdi_osti_scitechconnect_1246360 |
source | Business Source Complete; Wiley Online Library All Journals |
subjects | Eigenvalues Lattice theory Mathematical analysis Mathematics MATHEMATICS AND COMPUTING Nonlinear systems Studies |
title | Nonlinear Instabilities of Multi-Site Breathers in Klein-Gordon Lattices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T13%3A10%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Instabilities%20of%20Multi-Site%20Breathers%20in%20Klein-Gordon%20Lattices&rft.jtitle=Studies%20in%20applied%20mathematics%20(Cambridge)&rft.au=Cuevas-Maraver,%20Jes%C3%BAs&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2016-08&rft.volume=137&rft.issue=2&rft.spage=214&rft.epage=237&rft.pages=214-237&rft.issn=0022-2526&rft.eissn=1467-9590&rft_id=info:doi/10.1111/sapm.12107&rft_dat=%3Cproquest_osti_%3E4143682881%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1810535648&rft_id=info:pmid/&rfr_iscdi=true |