Solar Energy Conversion Properties and Defect Physics of ZnSiP2
Implementation of an optically active material on silicon has been a persistent technological challenge. For tandem photovoltaics using a Si bottom cell, as well as for other optoelectronic applications, there has been a longstanding need for optically active, wide band gap materials that can be int...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2016-01, Vol.9 (3) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Energy & environmental science |
container_volume | 9 |
creator | Martinez, Aaron D. Warren, Emily L. Gorai, Prashun Borup, Kasper A. Kuciauskas, Darius Dippo, Patricia C. Ortiz, Brenden R. Macaluso, Robin T. Nguyen, Sau D. Greenaway, Ann L. Boettcher, Shannon W. Norman, Andrew G. Stevanovic, Vladan Toberer, Eric S. Tamboli, Adele C. |
description | Implementation of an optically active material on silicon has been a persistent technological challenge. For tandem photovoltaics using a Si bottom cell, as well as for other optoelectronic applications, there has been a longstanding need for optically active, wide band gap materials that can be integrated with Si. ZnSiP2 is a stable, wide band gap (2.1 eV) material that is lattice matched with silicon and comprised of inexpensive elements. As we show in this paper, it is also a defect-tolerant material. Here, we report the first ZnSiP2 photovoltaic device. We show that ZnSiP2 has excellent photoresponse and high open circuit voltage of 1.3 V, as measured in a photoelectrochemical configuration. The high voltage and low band gap-voltage offset are on par with much more mature wide band gap III-V materials. Photoluminescence data combined with theoretical defect calculations illuminate the defect physics underlying this high voltage, showing that the intrinsic defects in ZnSiP2 are shallow and the minority carrier lifetime is 7 ns. These favorable results encourage the development of ZnSiP2 and related materials as photovoltaic absorber materials. |
doi_str_mv | 10.1039/C5EE02884A |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1245125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1245125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-8ba0d17e8fb490fb1d0d06dfb49234020dd13a10a9ba1eb3e5b148a676ff0ed43</originalsourceid><addsrcrecordid>eNo1js1KAzEYRYMoWKsbnyC4H_3yOzMrKeNUC4UOVDduSn6-2EhJZDIIfXsVdXXP2RwuIdcMbhmI9q5TfQ-8aeTihMxYrWSlatCn_6xbfk4uSnkH0Bzqdkbut_lgRtonHN-OtMvpE8cSc6LDmD9wnCIWapKnDxjQTXTYH0t0heZAX9M2DvySnAVzKHj1t3Pysuyfu6dqvXlcdYt15YTWU9VYA57V2AQrWwiWefCg_Y9xIYGD90wYBqa1hqEVqCyTjdG1DgHQSzEnN7_dXKa4Ky5O6PYup_T9ase4VIwr8QX6-kmi</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solar Energy Conversion Properties and Defect Physics of ZnSiP2</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Martinez, Aaron D. ; Warren, Emily L. ; Gorai, Prashun ; Borup, Kasper A. ; Kuciauskas, Darius ; Dippo, Patricia C. ; Ortiz, Brenden R. ; Macaluso, Robin T. ; Nguyen, Sau D. ; Greenaway, Ann L. ; Boettcher, Shannon W. ; Norman, Andrew G. ; Stevanovic, Vladan ; Toberer, Eric S. ; Tamboli, Adele C.</creator><creatorcontrib>Martinez, Aaron D. ; Warren, Emily L. ; Gorai, Prashun ; Borup, Kasper A. ; Kuciauskas, Darius ; Dippo, Patricia C. ; Ortiz, Brenden R. ; Macaluso, Robin T. ; Nguyen, Sau D. ; Greenaway, Ann L. ; Boettcher, Shannon W. ; Norman, Andrew G. ; Stevanovic, Vladan ; Toberer, Eric S. ; Tamboli, Adele C. ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Implementation of an optically active material on silicon has been a persistent technological challenge. For tandem photovoltaics using a Si bottom cell, as well as for other optoelectronic applications, there has been a longstanding need for optically active, wide band gap materials that can be integrated with Si. ZnSiP2 is a stable, wide band gap (2.1 eV) material that is lattice matched with silicon and comprised of inexpensive elements. As we show in this paper, it is also a defect-tolerant material. Here, we report the first ZnSiP2 photovoltaic device. We show that ZnSiP2 has excellent photoresponse and high open circuit voltage of 1.3 V, as measured in a photoelectrochemical configuration. The high voltage and low band gap-voltage offset are on par with much more mature wide band gap III-V materials. Photoluminescence data combined with theoretical defect calculations illuminate the defect physics underlying this high voltage, showing that the intrinsic defects in ZnSiP2 are shallow and the minority carrier lifetime is 7 ns. These favorable results encourage the development of ZnSiP2 and related materials as photovoltaic absorber materials.</description><identifier>ISSN: 1754-5692</identifier><identifier>EISSN: 1754-5706</identifier><identifier>DOI: 10.1039/C5EE02884A</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>MATERIALS SCIENCE ; SOLAR ENERGY ; tandem photovoltaics ; wide band gap materials ; ZnSiP2</subject><ispartof>Energy & environmental science, 2016-01, Vol.9 (3)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-8ba0d17e8fb490fb1d0d06dfb49234020dd13a10a9ba1eb3e5b148a676ff0ed43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1245125$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Martinez, Aaron D.</creatorcontrib><creatorcontrib>Warren, Emily L.</creatorcontrib><creatorcontrib>Gorai, Prashun</creatorcontrib><creatorcontrib>Borup, Kasper A.</creatorcontrib><creatorcontrib>Kuciauskas, Darius</creatorcontrib><creatorcontrib>Dippo, Patricia C.</creatorcontrib><creatorcontrib>Ortiz, Brenden R.</creatorcontrib><creatorcontrib>Macaluso, Robin T.</creatorcontrib><creatorcontrib>Nguyen, Sau D.</creatorcontrib><creatorcontrib>Greenaway, Ann L.</creatorcontrib><creatorcontrib>Boettcher, Shannon W.</creatorcontrib><creatorcontrib>Norman, Andrew G.</creatorcontrib><creatorcontrib>Stevanovic, Vladan</creatorcontrib><creatorcontrib>Toberer, Eric S.</creatorcontrib><creatorcontrib>Tamboli, Adele C.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Solar Energy Conversion Properties and Defect Physics of ZnSiP2</title><title>Energy & environmental science</title><description>Implementation of an optically active material on silicon has been a persistent technological challenge. For tandem photovoltaics using a Si bottom cell, as well as for other optoelectronic applications, there has been a longstanding need for optically active, wide band gap materials that can be integrated with Si. ZnSiP2 is a stable, wide band gap (2.1 eV) material that is lattice matched with silicon and comprised of inexpensive elements. As we show in this paper, it is also a defect-tolerant material. Here, we report the first ZnSiP2 photovoltaic device. We show that ZnSiP2 has excellent photoresponse and high open circuit voltage of 1.3 V, as measured in a photoelectrochemical configuration. The high voltage and low band gap-voltage offset are on par with much more mature wide band gap III-V materials. Photoluminescence data combined with theoretical defect calculations illuminate the defect physics underlying this high voltage, showing that the intrinsic defects in ZnSiP2 are shallow and the minority carrier lifetime is 7 ns. These favorable results encourage the development of ZnSiP2 and related materials as photovoltaic absorber materials.</description><subject>MATERIALS SCIENCE</subject><subject>SOLAR ENERGY</subject><subject>tandem photovoltaics</subject><subject>wide band gap materials</subject><subject>ZnSiP2</subject><issn>1754-5692</issn><issn>1754-5706</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo1js1KAzEYRYMoWKsbnyC4H_3yOzMrKeNUC4UOVDduSn6-2EhJZDIIfXsVdXXP2RwuIdcMbhmI9q5TfQ-8aeTihMxYrWSlatCn_6xbfk4uSnkH0Bzqdkbut_lgRtonHN-OtMvpE8cSc6LDmD9wnCIWapKnDxjQTXTYH0t0heZAX9M2DvySnAVzKHj1t3Pysuyfu6dqvXlcdYt15YTWU9VYA57V2AQrWwiWefCg_Y9xIYGD90wYBqa1hqEVqCyTjdG1DgHQSzEnN7_dXKa4Ky5O6PYup_T9ase4VIwr8QX6-kmi</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Martinez, Aaron D.</creator><creator>Warren, Emily L.</creator><creator>Gorai, Prashun</creator><creator>Borup, Kasper A.</creator><creator>Kuciauskas, Darius</creator><creator>Dippo, Patricia C.</creator><creator>Ortiz, Brenden R.</creator><creator>Macaluso, Robin T.</creator><creator>Nguyen, Sau D.</creator><creator>Greenaway, Ann L.</creator><creator>Boettcher, Shannon W.</creator><creator>Norman, Andrew G.</creator><creator>Stevanovic, Vladan</creator><creator>Toberer, Eric S.</creator><creator>Tamboli, Adele C.</creator><general>Royal Society of Chemistry</general><scope>OTOTI</scope></search><sort><creationdate>20160101</creationdate><title>Solar Energy Conversion Properties and Defect Physics of ZnSiP2</title><author>Martinez, Aaron D. ; Warren, Emily L. ; Gorai, Prashun ; Borup, Kasper A. ; Kuciauskas, Darius ; Dippo, Patricia C. ; Ortiz, Brenden R. ; Macaluso, Robin T. ; Nguyen, Sau D. ; Greenaway, Ann L. ; Boettcher, Shannon W. ; Norman, Andrew G. ; Stevanovic, Vladan ; Toberer, Eric S. ; Tamboli, Adele C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-8ba0d17e8fb490fb1d0d06dfb49234020dd13a10a9ba1eb3e5b148a676ff0ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>MATERIALS SCIENCE</topic><topic>SOLAR ENERGY</topic><topic>tandem photovoltaics</topic><topic>wide band gap materials</topic><topic>ZnSiP2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martinez, Aaron D.</creatorcontrib><creatorcontrib>Warren, Emily L.</creatorcontrib><creatorcontrib>Gorai, Prashun</creatorcontrib><creatorcontrib>Borup, Kasper A.</creatorcontrib><creatorcontrib>Kuciauskas, Darius</creatorcontrib><creatorcontrib>Dippo, Patricia C.</creatorcontrib><creatorcontrib>Ortiz, Brenden R.</creatorcontrib><creatorcontrib>Macaluso, Robin T.</creatorcontrib><creatorcontrib>Nguyen, Sau D.</creatorcontrib><creatorcontrib>Greenaway, Ann L.</creatorcontrib><creatorcontrib>Boettcher, Shannon W.</creatorcontrib><creatorcontrib>Norman, Andrew G.</creatorcontrib><creatorcontrib>Stevanovic, Vladan</creatorcontrib><creatorcontrib>Toberer, Eric S.</creatorcontrib><creatorcontrib>Tamboli, Adele C.</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>OSTI.GOV</collection><jtitle>Energy & environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martinez, Aaron D.</au><au>Warren, Emily L.</au><au>Gorai, Prashun</au><au>Borup, Kasper A.</au><au>Kuciauskas, Darius</au><au>Dippo, Patricia C.</au><au>Ortiz, Brenden R.</au><au>Macaluso, Robin T.</au><au>Nguyen, Sau D.</au><au>Greenaway, Ann L.</au><au>Boettcher, Shannon W.</au><au>Norman, Andrew G.</au><au>Stevanovic, Vladan</au><au>Toberer, Eric S.</au><au>Tamboli, Adele C.</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solar Energy Conversion Properties and Defect Physics of ZnSiP2</atitle><jtitle>Energy & environmental science</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>9</volume><issue>3</issue><issn>1754-5692</issn><eissn>1754-5706</eissn><abstract>Implementation of an optically active material on silicon has been a persistent technological challenge. For tandem photovoltaics using a Si bottom cell, as well as for other optoelectronic applications, there has been a longstanding need for optically active, wide band gap materials that can be integrated with Si. ZnSiP2 is a stable, wide band gap (2.1 eV) material that is lattice matched with silicon and comprised of inexpensive elements. As we show in this paper, it is also a defect-tolerant material. Here, we report the first ZnSiP2 photovoltaic device. We show that ZnSiP2 has excellent photoresponse and high open circuit voltage of 1.3 V, as measured in a photoelectrochemical configuration. The high voltage and low band gap-voltage offset are on par with much more mature wide band gap III-V materials. Photoluminescence data combined with theoretical defect calculations illuminate the defect physics underlying this high voltage, showing that the intrinsic defects in ZnSiP2 are shallow and the minority carrier lifetime is 7 ns. These favorable results encourage the development of ZnSiP2 and related materials as photovoltaic absorber materials.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C5EE02884A</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1754-5692 |
ispartof | Energy & environmental science, 2016-01, Vol.9 (3) |
issn | 1754-5692 1754-5706 |
language | eng |
recordid | cdi_osti_scitechconnect_1245125 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | MATERIALS SCIENCE SOLAR ENERGY tandem photovoltaics wide band gap materials ZnSiP2 |
title | Solar Energy Conversion Properties and Defect Physics of ZnSiP2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T09%3A04%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solar%20Energy%20Conversion%20Properties%20and%20Defect%20Physics%20of%20ZnSiP2&rft.jtitle=Energy%20&%20environmental%20science&rft.au=Martinez,%20Aaron%20D.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2016-01-01&rft.volume=9&rft.issue=3&rft.issn=1754-5692&rft.eissn=1754-5706&rft_id=info:doi/10.1039/C5EE02884A&rft_dat=%3Costi%3E1245125%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |