Noble gas migration experiment to support the detection of underground nuclear explosions

A Noble Gas Migration Experiment injected 127 Xe, 37 Ar, and sulfur hexafluoride into a former underground nuclear explosion shot cavity. These tracer gases were allowed to migrate from the cavity to near-surface and surface sampling locations and were detected in soil gas samples collected using va...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of radioanalytical and nuclear chemistry 2016-03, Vol.307 (3), p.2603-2610
Hauptverfasser: Olsen, K. B., Kirkham, R. R., Woods, V. T., Haas, D. H., Hayes, J. C., Bowyer, T. W., Mendoza, D. P., Lowrey, J. D., Lukins, C. D., Suarez, R. D., Humble, P. H., Ellefson, M. D., Ripplinger, M. D., Zhong, L., Mitroshkov, A. V., Aalseth, C. E., Prinke, A. M., Mace, E. K., McIntyre, J. I., Stewart, T. L., Mackley, R. D., Milbrath, B. D., Emer, D. F., Biegalski, S. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2610
container_issue 3
container_start_page 2603
container_title Journal of radioanalytical and nuclear chemistry
container_volume 307
creator Olsen, K. B.
Kirkham, R. R.
Woods, V. T.
Haas, D. H.
Hayes, J. C.
Bowyer, T. W.
Mendoza, D. P.
Lowrey, J. D.
Lukins, C. D.
Suarez, R. D.
Humble, P. H.
Ellefson, M. D.
Ripplinger, M. D.
Zhong, L.
Mitroshkov, A. V.
Aalseth, C. E.
Prinke, A. M.
Mace, E. K.
McIntyre, J. I.
Stewart, T. L.
Mackley, R. D.
Milbrath, B. D.
Emer, D. F.
Biegalski, S. R.
description A Noble Gas Migration Experiment injected 127 Xe, 37 Ar, and sulfur hexafluoride into a former underground nuclear explosion shot cavity. These tracer gases were allowed to migrate from the cavity to near-surface and surface sampling locations and were detected in soil gas samples collected using various on-site inspection sampling approaches. Based on this experiment we came to the following conclusions: (1) SF 6 was enriched in all of the samples relative to both 37 Ar and 127 Xe. (2) There were no significant differences in the 127 Xe to 37 Ar ratio in the samples relative to the ratio injected into the cavity. (3) The migratory behavior of the chemical and radiotracers did not fit typical diffusion modeling scenarios.
doi_str_mv 10.1007/s10967-015-4639-7
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1243200</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A445296315</galeid><sourcerecordid>A445296315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-6955b2e45edccc316e83a423dbb350a03f9c1768eb9e1db7e3a6cd68bfe5abd43</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9gidhc7_krGquJLqmCBgcmynUuaKrUrO5Hg3-MSZuThrNPznO5ehG4pWVFC1H2ipJYKEyowl6zG6gwtqKgqXKqKnKMFKZnEQjF6ia5S2hNC6qpiC_T5GuwARWdScei7aMY--AK-jhD7A_ixGEORpuMxxPzdQdHACO6XCW0x-QZiF0OuhZ_cACae1CGkDKRrdNGaIcHNX12ij8eH980z3r49vWzWW-yY4COWtRC2BC6gcc4xKqFihpessZYJYghra0eVrMDWQBurgBnpGlnZFoSxDWdLdDfPDWnsdXJ93nDngvd5UU1LzkpCMrSaoc4MoHvfhjEal18Dhz7D0Pa5v-ZclLVkVGSBzoKLIaUIrT7mREz81pToU-J6TlznxPUpca2yU85OyqzvIOp9mKLPx_8j_QDvMIXG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Noble gas migration experiment to support the detection of underground nuclear explosions</title><source>SpringerLink Journals</source><creator>Olsen, K. B. ; Kirkham, R. R. ; Woods, V. T. ; Haas, D. H. ; Hayes, J. C. ; Bowyer, T. W. ; Mendoza, D. P. ; Lowrey, J. D. ; Lukins, C. D. ; Suarez, R. D. ; Humble, P. H. ; Ellefson, M. D. ; Ripplinger, M. D. ; Zhong, L. ; Mitroshkov, A. V. ; Aalseth, C. E. ; Prinke, A. M. ; Mace, E. K. ; McIntyre, J. I. ; Stewart, T. L. ; Mackley, R. D. ; Milbrath, B. D. ; Emer, D. F. ; Biegalski, S. R.</creator><creatorcontrib>Olsen, K. B. ; Kirkham, R. R. ; Woods, V. T. ; Haas, D. H. ; Hayes, J. C. ; Bowyer, T. W. ; Mendoza, D. P. ; Lowrey, J. D. ; Lukins, C. D. ; Suarez, R. D. ; Humble, P. H. ; Ellefson, M. D. ; Ripplinger, M. D. ; Zhong, L. ; Mitroshkov, A. V. ; Aalseth, C. E. ; Prinke, A. M. ; Mace, E. K. ; McIntyre, J. I. ; Stewart, T. L. ; Mackley, R. D. ; Milbrath, B. D. ; Emer, D. F. ; Biegalski, S. R. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>A Noble Gas Migration Experiment injected 127 Xe, 37 Ar, and sulfur hexafluoride into a former underground nuclear explosion shot cavity. These tracer gases were allowed to migrate from the cavity to near-surface and surface sampling locations and were detected in soil gas samples collected using various on-site inspection sampling approaches. Based on this experiment we came to the following conclusions: (1) SF 6 was enriched in all of the samples relative to both 37 Ar and 127 Xe. (2) There were no significant differences in the 127 Xe to 37 Ar ratio in the samples relative to the ratio injected into the cavity. (3) The migratory behavior of the chemical and radiotracers did not fit typical diffusion modeling scenarios.</description><identifier>ISSN: 0236-5731</identifier><identifier>EISSN: 1588-2780</identifier><identifier>DOI: 10.1007/s10967-015-4639-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Chemistry ; Chemistry and Materials Science ; Diagnostic Radiology ; Explosions ; Hadrons ; Heavy Ions ; Inorganic Chemistry ; Nuclear Chemistry ; Nuclear Physics ; Physical Chemistry ; Sulfur hexafluoride ; Tracers (Biology) ; Underground nuclear explosion, Explosion cavity, On-site inspection, Comprehensive Test-Ban Treaty, Noble gas signatures</subject><ispartof>Journal of radioanalytical and nuclear chemistry, 2016-03, Vol.307 (3), p.2603-2610</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2015</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-6955b2e45edccc316e83a423dbb350a03f9c1768eb9e1db7e3a6cd68bfe5abd43</citedby><cites>FETCH-LOGICAL-c354t-6955b2e45edccc316e83a423dbb350a03f9c1768eb9e1db7e3a6cd68bfe5abd43</cites><orcidid>0000-0002-9992-3045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10967-015-4639-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10967-015-4639-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1243200$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Olsen, K. B.</creatorcontrib><creatorcontrib>Kirkham, R. R.</creatorcontrib><creatorcontrib>Woods, V. T.</creatorcontrib><creatorcontrib>Haas, D. H.</creatorcontrib><creatorcontrib>Hayes, J. C.</creatorcontrib><creatorcontrib>Bowyer, T. W.</creatorcontrib><creatorcontrib>Mendoza, D. P.</creatorcontrib><creatorcontrib>Lowrey, J. D.</creatorcontrib><creatorcontrib>Lukins, C. D.</creatorcontrib><creatorcontrib>Suarez, R. D.</creatorcontrib><creatorcontrib>Humble, P. H.</creatorcontrib><creatorcontrib>Ellefson, M. D.</creatorcontrib><creatorcontrib>Ripplinger, M. D.</creatorcontrib><creatorcontrib>Zhong, L.</creatorcontrib><creatorcontrib>Mitroshkov, A. V.</creatorcontrib><creatorcontrib>Aalseth, C. E.</creatorcontrib><creatorcontrib>Prinke, A. M.</creatorcontrib><creatorcontrib>Mace, E. K.</creatorcontrib><creatorcontrib>McIntyre, J. I.</creatorcontrib><creatorcontrib>Stewart, T. L.</creatorcontrib><creatorcontrib>Mackley, R. D.</creatorcontrib><creatorcontrib>Milbrath, B. D.</creatorcontrib><creatorcontrib>Emer, D. F.</creatorcontrib><creatorcontrib>Biegalski, S. R.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Noble gas migration experiment to support the detection of underground nuclear explosions</title><title>Journal of radioanalytical and nuclear chemistry</title><addtitle>J Radioanal Nucl Chem</addtitle><description>A Noble Gas Migration Experiment injected 127 Xe, 37 Ar, and sulfur hexafluoride into a former underground nuclear explosion shot cavity. These tracer gases were allowed to migrate from the cavity to near-surface and surface sampling locations and were detected in soil gas samples collected using various on-site inspection sampling approaches. Based on this experiment we came to the following conclusions: (1) SF 6 was enriched in all of the samples relative to both 37 Ar and 127 Xe. (2) There were no significant differences in the 127 Xe to 37 Ar ratio in the samples relative to the ratio injected into the cavity. (3) The migratory behavior of the chemical and radiotracers did not fit typical diffusion modeling scenarios.</description><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Diagnostic Radiology</subject><subject>Explosions</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Inorganic Chemistry</subject><subject>Nuclear Chemistry</subject><subject>Nuclear Physics</subject><subject>Physical Chemistry</subject><subject>Sulfur hexafluoride</subject><subject>Tracers (Biology)</subject><subject>Underground nuclear explosion, Explosion cavity, On-site inspection, Comprehensive Test-Ban Treaty, Noble gas signatures</subject><issn>0236-5731</issn><issn>1588-2780</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9gidhc7_krGquJLqmCBgcmynUuaKrUrO5Hg3-MSZuThrNPznO5ehG4pWVFC1H2ipJYKEyowl6zG6gwtqKgqXKqKnKMFKZnEQjF6ia5S2hNC6qpiC_T5GuwARWdScei7aMY--AK-jhD7A_ixGEORpuMxxPzdQdHACO6XCW0x-QZiF0OuhZ_cACae1CGkDKRrdNGaIcHNX12ij8eH980z3r49vWzWW-yY4COWtRC2BC6gcc4xKqFihpessZYJYghra0eVrMDWQBurgBnpGlnZFoSxDWdLdDfPDWnsdXJ93nDngvd5UU1LzkpCMrSaoc4MoHvfhjEal18Dhz7D0Pa5v-ZclLVkVGSBzoKLIaUIrT7mREz81pToU-J6TlznxPUpca2yU85OyqzvIOp9mKLPx_8j_QDvMIXG</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Olsen, K. B.</creator><creator>Kirkham, R. R.</creator><creator>Woods, V. T.</creator><creator>Haas, D. H.</creator><creator>Hayes, J. C.</creator><creator>Bowyer, T. W.</creator><creator>Mendoza, D. P.</creator><creator>Lowrey, J. D.</creator><creator>Lukins, C. D.</creator><creator>Suarez, R. D.</creator><creator>Humble, P. H.</creator><creator>Ellefson, M. D.</creator><creator>Ripplinger, M. D.</creator><creator>Zhong, L.</creator><creator>Mitroshkov, A. V.</creator><creator>Aalseth, C. E.</creator><creator>Prinke, A. M.</creator><creator>Mace, E. K.</creator><creator>McIntyre, J. I.</creator><creator>Stewart, T. L.</creator><creator>Mackley, R. D.</creator><creator>Milbrath, B. D.</creator><creator>Emer, D. F.</creator><creator>Biegalski, S. R.</creator><general>Springer Netherlands</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9992-3045</orcidid></search><sort><creationdate>20160301</creationdate><title>Noble gas migration experiment to support the detection of underground nuclear explosions</title><author>Olsen, K. B. ; Kirkham, R. R. ; Woods, V. T. ; Haas, D. H. ; Hayes, J. C. ; Bowyer, T. W. ; Mendoza, D. P. ; Lowrey, J. D. ; Lukins, C. D. ; Suarez, R. D. ; Humble, P. H. ; Ellefson, M. D. ; Ripplinger, M. D. ; Zhong, L. ; Mitroshkov, A. V. ; Aalseth, C. E. ; Prinke, A. M. ; Mace, E. K. ; McIntyre, J. I. ; Stewart, T. L. ; Mackley, R. D. ; Milbrath, B. D. ; Emer, D. F. ; Biegalski, S. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-6955b2e45edccc316e83a423dbb350a03f9c1768eb9e1db7e3a6cd68bfe5abd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Diagnostic Radiology</topic><topic>Explosions</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Inorganic Chemistry</topic><topic>Nuclear Chemistry</topic><topic>Nuclear Physics</topic><topic>Physical Chemistry</topic><topic>Sulfur hexafluoride</topic><topic>Tracers (Biology)</topic><topic>Underground nuclear explosion, Explosion cavity, On-site inspection, Comprehensive Test-Ban Treaty, Noble gas signatures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olsen, K. B.</creatorcontrib><creatorcontrib>Kirkham, R. R.</creatorcontrib><creatorcontrib>Woods, V. T.</creatorcontrib><creatorcontrib>Haas, D. H.</creatorcontrib><creatorcontrib>Hayes, J. C.</creatorcontrib><creatorcontrib>Bowyer, T. W.</creatorcontrib><creatorcontrib>Mendoza, D. P.</creatorcontrib><creatorcontrib>Lowrey, J. D.</creatorcontrib><creatorcontrib>Lukins, C. D.</creatorcontrib><creatorcontrib>Suarez, R. D.</creatorcontrib><creatorcontrib>Humble, P. H.</creatorcontrib><creatorcontrib>Ellefson, M. D.</creatorcontrib><creatorcontrib>Ripplinger, M. D.</creatorcontrib><creatorcontrib>Zhong, L.</creatorcontrib><creatorcontrib>Mitroshkov, A. V.</creatorcontrib><creatorcontrib>Aalseth, C. E.</creatorcontrib><creatorcontrib>Prinke, A. M.</creatorcontrib><creatorcontrib>Mace, E. K.</creatorcontrib><creatorcontrib>McIntyre, J. I.</creatorcontrib><creatorcontrib>Stewart, T. L.</creatorcontrib><creatorcontrib>Mackley, R. D.</creatorcontrib><creatorcontrib>Milbrath, B. D.</creatorcontrib><creatorcontrib>Emer, D. F.</creatorcontrib><creatorcontrib>Biegalski, S. R.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olsen, K. B.</au><au>Kirkham, R. R.</au><au>Woods, V. T.</au><au>Haas, D. H.</au><au>Hayes, J. C.</au><au>Bowyer, T. W.</au><au>Mendoza, D. P.</au><au>Lowrey, J. D.</au><au>Lukins, C. D.</au><au>Suarez, R. D.</au><au>Humble, P. H.</au><au>Ellefson, M. D.</au><au>Ripplinger, M. D.</au><au>Zhong, L.</au><au>Mitroshkov, A. V.</au><au>Aalseth, C. E.</au><au>Prinke, A. M.</au><au>Mace, E. K.</au><au>McIntyre, J. I.</au><au>Stewart, T. L.</au><au>Mackley, R. D.</au><au>Milbrath, B. D.</au><au>Emer, D. F.</au><au>Biegalski, S. R.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noble gas migration experiment to support the detection of underground nuclear explosions</atitle><jtitle>Journal of radioanalytical and nuclear chemistry</jtitle><stitle>J Radioanal Nucl Chem</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>307</volume><issue>3</issue><spage>2603</spage><epage>2610</epage><pages>2603-2610</pages><issn>0236-5731</issn><eissn>1588-2780</eissn><abstract>A Noble Gas Migration Experiment injected 127 Xe, 37 Ar, and sulfur hexafluoride into a former underground nuclear explosion shot cavity. These tracer gases were allowed to migrate from the cavity to near-surface and surface sampling locations and were detected in soil gas samples collected using various on-site inspection sampling approaches. Based on this experiment we came to the following conclusions: (1) SF 6 was enriched in all of the samples relative to both 37 Ar and 127 Xe. (2) There were no significant differences in the 127 Xe to 37 Ar ratio in the samples relative to the ratio injected into the cavity. (3) The migratory behavior of the chemical and radiotracers did not fit typical diffusion modeling scenarios.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10967-015-4639-7</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9992-3045</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0236-5731
ispartof Journal of radioanalytical and nuclear chemistry, 2016-03, Vol.307 (3), p.2603-2610
issn 0236-5731
1588-2780
language eng
recordid cdi_osti_scitechconnect_1243200
source SpringerLink Journals
subjects Chemistry
Chemistry and Materials Science
Diagnostic Radiology
Explosions
Hadrons
Heavy Ions
Inorganic Chemistry
Nuclear Chemistry
Nuclear Physics
Physical Chemistry
Sulfur hexafluoride
Tracers (Biology)
Underground nuclear explosion, Explosion cavity, On-site inspection, Comprehensive Test-Ban Treaty, Noble gas signatures
title Noble gas migration experiment to support the detection of underground nuclear explosions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noble%20gas%20migration%20experiment%20to%20support%20the%20detection%20of%20underground%20nuclear%20explosions&rft.jtitle=Journal%20of%20radioanalytical%20and%20nuclear%20chemistry&rft.au=Olsen,%20K.%20B.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2016-03-01&rft.volume=307&rft.issue=3&rft.spage=2603&rft.epage=2610&rft.pages=2603-2610&rft.issn=0236-5731&rft.eissn=1588-2780&rft_id=info:doi/10.1007/s10967-015-4639-7&rft_dat=%3Cgale_osti_%3EA445296315%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A445296315&rfr_iscdi=true