Quantum focusing conjecture
We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface [sigma] that need not lie on a horizon, we define a finite generalized entropyS sub(gen) as the area of [sigma] in Planck units, plus the von Neumann entropy of its exterior. Given a...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2016-03, Vol.93 (6), Article 064044 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physical review. D |
container_volume | 93 |
creator | Bousso, Raphael Fisher, Zachary Leichenauer, Stefan Wall, Aron C. |
description | We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface [sigma] that need not lie on a horizon, we define a finite generalized entropyS sub(gen) as the area of [sigma] in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to [sigma], the rate of change of S sub(gen) per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N. This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory. |
doi_str_mv | 10.1103/PhysRevD.93.064044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1242613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816029499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-513106871d6d65313e68a50fecf70d21b624abbc1c04b5d2a5f9158330964c433</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsNT-Ad0UV24S751XMkupTyj4QNfDZDJjU5JMzSRC_70pUVf3LD4O536EnCOkiMCuXzb7-Oa-b1PFUpAcOD8iM8ozSACoOv7PCKdkEeMWxihBZYgzcvE6mLYfmqUPdohV-7m0od062w-dOyMn3tTRLX7vnHzc372vHpP188PT6madWA7QJwIZgswzLGUpBUPmZG4EeGd9BiXFQlJuisKiBV6IkhrhFYqcMVCSW87YnFxOvSH2lY626p3djDPacYZGyqnEA3Q1QbsufA0u9rqponV1bVoXhqgxH3-iiis1onRCbRdi7JzXu65qTLfXCPpgTP8Z04rpyRj7ATFKXT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816029499</pqid></control><display><type>article</type><title>Quantum focusing conjecture</title><source>American Physical Society Journals</source><creator>Bousso, Raphael ; Fisher, Zachary ; Leichenauer, Stefan ; Wall, Aron C.</creator><creatorcontrib>Bousso, Raphael ; Fisher, Zachary ; Leichenauer, Stefan ; Wall, Aron C.</creatorcontrib><description>We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface [sigma] that need not lie on a horizon, we define a finite generalized entropyS sub(gen) as the area of [sigma] in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to [sigma], the rate of change of S sub(gen) per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N. This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.93.064044</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Cosmology ; Derivatives ; Entropy ; Exteriors ; Focusing ; Gravitation ; Inequalities ; Mathematical analysis</subject><ispartof>Physical review. D, 2016-03, Vol.93 (6), Article 064044</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-513106871d6d65313e68a50fecf70d21b624abbc1c04b5d2a5f9158330964c433</citedby><cites>FETCH-LOGICAL-c400t-513106871d6d65313e68a50fecf70d21b624abbc1c04b5d2a5f9158330964c433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1242613$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bousso, Raphael</creatorcontrib><creatorcontrib>Fisher, Zachary</creatorcontrib><creatorcontrib>Leichenauer, Stefan</creatorcontrib><creatorcontrib>Wall, Aron C.</creatorcontrib><title>Quantum focusing conjecture</title><title>Physical review. D</title><description>We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface [sigma] that need not lie on a horizon, we define a finite generalized entropyS sub(gen) as the area of [sigma] in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to [sigma], the rate of change of S sub(gen) per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N. This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.</description><subject>Cosmology</subject><subject>Derivatives</subject><subject>Entropy</subject><subject>Exteriors</subject><subject>Focusing</subject><subject>Gravitation</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsNT-Ad0UV24S751XMkupTyj4QNfDZDJjU5JMzSRC_70pUVf3LD4O536EnCOkiMCuXzb7-Oa-b1PFUpAcOD8iM8ozSACoOv7PCKdkEeMWxihBZYgzcvE6mLYfmqUPdohV-7m0od062w-dOyMn3tTRLX7vnHzc372vHpP188PT6madWA7QJwIZgswzLGUpBUPmZG4EeGd9BiXFQlJuisKiBV6IkhrhFYqcMVCSW87YnFxOvSH2lY626p3djDPacYZGyqnEA3Q1QbsufA0u9rqponV1bVoXhqgxH3-iiis1onRCbRdi7JzXu65qTLfXCPpgTP8Z04rpyRj7ATFKXT0</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Bousso, Raphael</creator><creator>Fisher, Zachary</creator><creator>Leichenauer, Stefan</creator><creator>Wall, Aron C.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160316</creationdate><title>Quantum focusing conjecture</title><author>Bousso, Raphael ; Fisher, Zachary ; Leichenauer, Stefan ; Wall, Aron C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-513106871d6d65313e68a50fecf70d21b624abbc1c04b5d2a5f9158330964c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cosmology</topic><topic>Derivatives</topic><topic>Entropy</topic><topic>Exteriors</topic><topic>Focusing</topic><topic>Gravitation</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bousso, Raphael</creatorcontrib><creatorcontrib>Fisher, Zachary</creatorcontrib><creatorcontrib>Leichenauer, Stefan</creatorcontrib><creatorcontrib>Wall, Aron C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bousso, Raphael</au><au>Fisher, Zachary</au><au>Leichenauer, Stefan</au><au>Wall, Aron C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum focusing conjecture</atitle><jtitle>Physical review. D</jtitle><date>2016-03-16</date><risdate>2016</risdate><volume>93</volume><issue>6</issue><artnum>064044</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface [sigma] that need not lie on a horizon, we define a finite generalized entropyS sub(gen) as the area of [sigma] in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to [sigma], the rate of change of S sub(gen) per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N. This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.93.064044</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2016-03, Vol.93 (6), Article 064044 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_osti_scitechconnect_1242613 |
source | American Physical Society Journals |
subjects | Cosmology Derivatives Entropy Exteriors Focusing Gravitation Inequalities Mathematical analysis |
title | Quantum focusing conjecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20focusing%20conjecture&rft.jtitle=Physical%20review.%20D&rft.au=Bousso,%20Raphael&rft.date=2016-03-16&rft.volume=93&rft.issue=6&rft.artnum=064044&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.93.064044&rft_dat=%3Cproquest_osti_%3E1816029499%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816029499&rft_id=info:pmid/&rfr_iscdi=true |