Quantum focusing conjecture

We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface [sigma] that need not lie on a horizon, we define a finite generalized entropyS sub(gen) as the area of [sigma] in Planck units, plus the von Neumann entropy of its exterior. Given a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2016-03, Vol.93 (6), Article 064044
Hauptverfasser: Bousso, Raphael, Fisher, Zachary, Leichenauer, Stefan, Wall, Aron C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physical review. D
container_volume 93
creator Bousso, Raphael
Fisher, Zachary
Leichenauer, Stefan
Wall, Aron C.
description We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface [sigma] that need not lie on a horizon, we define a finite generalized entropyS sub(gen) as the area of [sigma] in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to [sigma], the rate of change of S sub(gen) per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N. This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.
doi_str_mv 10.1103/PhysRevD.93.064044
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1242613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1816029499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-513106871d6d65313e68a50fecf70d21b624abbc1c04b5d2a5f9158330964c433</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsNT-Ad0UV24S751XMkupTyj4QNfDZDJjU5JMzSRC_70pUVf3LD4O536EnCOkiMCuXzb7-Oa-b1PFUpAcOD8iM8ozSACoOv7PCKdkEeMWxihBZYgzcvE6mLYfmqUPdohV-7m0od062w-dOyMn3tTRLX7vnHzc372vHpP188PT6madWA7QJwIZgswzLGUpBUPmZG4EeGd9BiXFQlJuisKiBV6IkhrhFYqcMVCSW87YnFxOvSH2lY626p3djDPacYZGyqnEA3Q1QbsufA0u9rqponV1bVoXhqgxH3-iiis1onRCbRdi7JzXu65qTLfXCPpgTP8Z04rpyRj7ATFKXT0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816029499</pqid></control><display><type>article</type><title>Quantum focusing conjecture</title><source>American Physical Society Journals</source><creator>Bousso, Raphael ; Fisher, Zachary ; Leichenauer, Stefan ; Wall, Aron C.</creator><creatorcontrib>Bousso, Raphael ; Fisher, Zachary ; Leichenauer, Stefan ; Wall, Aron C.</creatorcontrib><description>We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface [sigma] that need not lie on a horizon, we define a finite generalized entropyS sub(gen) as the area of [sigma] in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to [sigma], the rate of change of S sub(gen) per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N. This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.93.064044</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Cosmology ; Derivatives ; Entropy ; Exteriors ; Focusing ; Gravitation ; Inequalities ; Mathematical analysis</subject><ispartof>Physical review. D, 2016-03, Vol.93 (6), Article 064044</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-513106871d6d65313e68a50fecf70d21b624abbc1c04b5d2a5f9158330964c433</citedby><cites>FETCH-LOGICAL-c400t-513106871d6d65313e68a50fecf70d21b624abbc1c04b5d2a5f9158330964c433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1242613$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bousso, Raphael</creatorcontrib><creatorcontrib>Fisher, Zachary</creatorcontrib><creatorcontrib>Leichenauer, Stefan</creatorcontrib><creatorcontrib>Wall, Aron C.</creatorcontrib><title>Quantum focusing conjecture</title><title>Physical review. D</title><description>We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface [sigma] that need not lie on a horizon, we define a finite generalized entropyS sub(gen) as the area of [sigma] in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to [sigma], the rate of change of S sub(gen) per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N. This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.</description><subject>Cosmology</subject><subject>Derivatives</subject><subject>Entropy</subject><subject>Exteriors</subject><subject>Focusing</subject><subject>Gravitation</subject><subject>Inequalities</subject><subject>Mathematical analysis</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsNT-Ad0UV24S751XMkupTyj4QNfDZDJjU5JMzSRC_70pUVf3LD4O536EnCOkiMCuXzb7-Oa-b1PFUpAcOD8iM8ozSACoOv7PCKdkEeMWxihBZYgzcvE6mLYfmqUPdohV-7m0od062w-dOyMn3tTRLX7vnHzc372vHpP188PT6madWA7QJwIZgswzLGUpBUPmZG4EeGd9BiXFQlJuisKiBV6IkhrhFYqcMVCSW87YnFxOvSH2lY626p3djDPacYZGyqnEA3Q1QbsufA0u9rqponV1bVoXhqgxH3-iiis1onRCbRdi7JzXu65qTLfXCPpgTP8Z04rpyRj7ATFKXT0</recordid><startdate>20160316</startdate><enddate>20160316</enddate><creator>Bousso, Raphael</creator><creator>Fisher, Zachary</creator><creator>Leichenauer, Stefan</creator><creator>Wall, Aron C.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20160316</creationdate><title>Quantum focusing conjecture</title><author>Bousso, Raphael ; Fisher, Zachary ; Leichenauer, Stefan ; Wall, Aron C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-513106871d6d65313e68a50fecf70d21b624abbc1c04b5d2a5f9158330964c433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cosmology</topic><topic>Derivatives</topic><topic>Entropy</topic><topic>Exteriors</topic><topic>Focusing</topic><topic>Gravitation</topic><topic>Inequalities</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bousso, Raphael</creatorcontrib><creatorcontrib>Fisher, Zachary</creatorcontrib><creatorcontrib>Leichenauer, Stefan</creatorcontrib><creatorcontrib>Wall, Aron C.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bousso, Raphael</au><au>Fisher, Zachary</au><au>Leichenauer, Stefan</au><au>Wall, Aron C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum focusing conjecture</atitle><jtitle>Physical review. D</jtitle><date>2016-03-16</date><risdate>2016</risdate><volume>93</volume><issue>6</issue><artnum>064044</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We propose a universal inequality that unifies the Bousso bound with the classical focusing theorem. Given a surface [sigma] that need not lie on a horizon, we define a finite generalized entropyS sub(gen) as the area of [sigma] in Planck units, plus the von Neumann entropy of its exterior. Given a null congruence N orthogonal to [sigma], the rate of change of S sub(gen) per unit area defines a quantum expansion. We conjecture that the quantum expansion cannot increase along N. This extends the notion of universal focusing to cases where quantum matter may violate the null energy condition. Integrating the conjecture yields a precise version of the Strominger-Thompson quantum Bousso bound. Applied to locally parallel light-rays, the conjecture implies a novel inequality, the quantum null energy condition, a lower bound on the stress tensor in terms of the second derivative of the von Neumann entropy. We sketch a proof of the latter relation in quantum field theory.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.93.064044</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2016-03, Vol.93 (6), Article 064044
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1242613
source American Physical Society Journals
subjects Cosmology
Derivatives
Entropy
Exteriors
Focusing
Gravitation
Inequalities
Mathematical analysis
title Quantum focusing conjecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A57%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20focusing%20conjecture&rft.jtitle=Physical%20review.%20D&rft.au=Bousso,%20Raphael&rft.date=2016-03-16&rft.volume=93&rft.issue=6&rft.artnum=064044&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.93.064044&rft_dat=%3Cproquest_osti_%3E1816029499%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816029499&rft_id=info:pmid/&rfr_iscdi=true