An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models

We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advances in modeling earth systems 2015-12, Vol.7 (4), p.1810-1827
Hauptverfasser: Ma, H.‐Y., Chuang, C. C., Klein, S. A., Lo, M.‐H., Zhang, Y., Xie, S., Zheng, X., Ma, P.‐L., Phillips, T. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1827
container_issue 4
container_start_page 1810
container_title Journal of advances in modeling earth systems
container_volume 7
creator Ma, H.‐Y.
Chuang, C. C.
Klein, S. A.
Lo, M.‐H.
Zhang, Y.
Xie, S.
Zheng, X.
Ma, P.‐L.
Zhang, Y.
Phillips, T. J.
description We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two‐step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off‐line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a “Core” integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud‐associated processes relative to observations. Key Points: An improved hindcast approach is proposed for climate model hindcast experiments This approach provides better initial conditions and improves the hindcasts Model developers can easily assess their parameterizations using this approach
doi_str_mv 10.1002/2015MS000490
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1239491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780518177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5417-36f2fe194e57af2de15b525a60616ee7d9070eac43453546c14755cda2aea7453</originalsourceid><addsrcrecordid>eNp90U1PHDEMBuARaiUo9MYPiOilBxacTD52jiu0fAnUQ9tzZDIeNiibbMezVPvvG7Q9oB56svXqkWXLTXMq4UICqEsF0jx-BwDdwUFzJDutZkpb--Fdf9h8Yn4BsNYqc9TERRZxvRnLK_ViFXMfkCeBm5pgWImhjIJeMW1xiiULzL3oIz7nwpFFGcRmteMYMInqAzETi5jFcypPNQsprnEisS49JT5pPg6YmD7_rcfNz-vlj6vb2cO3m7urxcMsGC3drLWDGqiuS8bhoHqS5skogxastESu78ABYdCtNq3RNkjtjAk9KiR0NTtuzvZzC0_Rc4gThVUoOVOYvFRtpztZ0dc9qnv_2hJPfh05UEqYqWzZSzcHI-fSuUq__ENfynbM9QSvoGt1a-cwr-p8r8JYmEca_Gas1487L8G_Pce_f07l7Z7_jol2_7X-fvG4VKCUa_8AF9mPlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093436808</pqid></control><display><type>article</type><title>An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models</title><source>Electronic Journals Library</source><source>Wiley Online Library</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley_OA刊</source><creator>Ma, H.‐Y. ; Chuang, C. C. ; Klein, S. A. ; Lo, M.‐H. ; Zhang, Y. ; Xie, S. ; Zheng, X. ; Ma, P.‐L. ; Zhang, Y. ; Phillips, T. J.</creator><creatorcontrib>Ma, H.‐Y. ; Chuang, C. C. ; Klein, S. A. ; Lo, M.‐H. ; Zhang, Y. ; Xie, S. ; Zheng, X. ; Ma, P.‐L. ; Zhang, Y. ; Phillips, T. J. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two‐step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off‐line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a “Core” integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud‐associated processes relative to observations. Key Points: An improved hindcast approach is proposed for climate model hindcast experiments This approach provides better initial conditions and improves the hindcasts Model developers can easily assess their parameterizations using this approach</description><identifier>ISSN: 1942-2466</identifier><identifier>EISSN: 1942-2466</identifier><identifier>DOI: 10.1002/2015MS000490</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Aerosols ; Air temperature ; Climate ; Climate models ; Climatology ; Clouds ; Data assimilation ; Data collection ; ENVIRONMENTAL SCIENCES ; Evaluation ; GCM ; GEOSCIENCES ; Global climate ; hindcast ; Humidity ; initial conditions ; model evaluation ; Parameterization ; Precipitation ; Radiation ; Rainfall ; Sea ice ; Sea ice temperatures ; Sea surface ; Sea surface temperature ; Soil ; Soil moisture ; Specific humidity ; Surface fluxes ; Surface temperature ; Surface-air temperature relationships ; Temperature (air-sea) ; transpose-AMIP ; Winds</subject><ispartof>Journal of advances in modeling earth systems, 2015-12, Vol.7 (4), p.1810-1827</ispartof><rights>2015. The Authors.</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5417-36f2fe194e57af2de15b525a60616ee7d9070eac43453546c14755cda2aea7453</citedby><cites>FETCH-LOGICAL-c5417-36f2fe194e57af2de15b525a60616ee7d9070eac43453546c14755cda2aea7453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015MS000490$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015MS000490$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1239491$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, H.‐Y.</creatorcontrib><creatorcontrib>Chuang, C. C.</creatorcontrib><creatorcontrib>Klein, S. A.</creatorcontrib><creatorcontrib>Lo, M.‐H.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Xie, S.</creatorcontrib><creatorcontrib>Zheng, X.</creatorcontrib><creatorcontrib>Ma, P.‐L.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Phillips, T. J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models</title><title>Journal of advances in modeling earth systems</title><description>We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two‐step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off‐line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a “Core” integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud‐associated processes relative to observations. Key Points: An improved hindcast approach is proposed for climate model hindcast experiments This approach provides better initial conditions and improves the hindcasts Model developers can easily assess their parameterizations using this approach</description><subject>Aerosols</subject><subject>Air temperature</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Clouds</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Evaluation</subject><subject>GCM</subject><subject>GEOSCIENCES</subject><subject>Global climate</subject><subject>hindcast</subject><subject>Humidity</subject><subject>initial conditions</subject><subject>model evaluation</subject><subject>Parameterization</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Rainfall</subject><subject>Sea ice</subject><subject>Sea ice temperatures</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Specific humidity</subject><subject>Surface fluxes</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Temperature (air-sea)</subject><subject>transpose-AMIP</subject><subject>Winds</subject><issn>1942-2466</issn><issn>1942-2466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp90U1PHDEMBuARaiUo9MYPiOilBxacTD52jiu0fAnUQ9tzZDIeNiibbMezVPvvG7Q9oB56svXqkWXLTXMq4UICqEsF0jx-BwDdwUFzJDutZkpb--Fdf9h8Yn4BsNYqc9TERRZxvRnLK_ViFXMfkCeBm5pgWImhjIJeMW1xiiULzL3oIz7nwpFFGcRmteMYMInqAzETi5jFcypPNQsprnEisS49JT5pPg6YmD7_rcfNz-vlj6vb2cO3m7urxcMsGC3drLWDGqiuS8bhoHqS5skogxastESu78ABYdCtNq3RNkjtjAk9KiR0NTtuzvZzC0_Rc4gThVUoOVOYvFRtpztZ0dc9qnv_2hJPfh05UEqYqWzZSzcHI-fSuUq__ENfynbM9QSvoGt1a-cwr-p8r8JYmEca_Gas1487L8G_Pce_f07l7Z7_jol2_7X-fvG4VKCUa_8AF9mPlQ</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Ma, H.‐Y.</creator><creator>Chuang, C. C.</creator><creator>Klein, S. A.</creator><creator>Lo, M.‐H.</creator><creator>Zhang, Y.</creator><creator>Xie, S.</creator><creator>Zheng, X.</creator><creator>Ma, P.‐L.</creator><creator>Zhang, Y.</creator><creator>Phillips, T. J.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201512</creationdate><title>An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models</title><author>Ma, H.‐Y. ; Chuang, C. C. ; Klein, S. A. ; Lo, M.‐H. ; Zhang, Y. ; Xie, S. ; Zheng, X. ; Ma, P.‐L. ; Zhang, Y. ; Phillips, T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5417-36f2fe194e57af2de15b525a60616ee7d9070eac43453546c14755cda2aea7453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aerosols</topic><topic>Air temperature</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Clouds</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Evaluation</topic><topic>GCM</topic><topic>GEOSCIENCES</topic><topic>Global climate</topic><topic>hindcast</topic><topic>Humidity</topic><topic>initial conditions</topic><topic>model evaluation</topic><topic>Parameterization</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Rainfall</topic><topic>Sea ice</topic><topic>Sea ice temperatures</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Specific humidity</topic><topic>Surface fluxes</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Temperature (air-sea)</topic><topic>transpose-AMIP</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, H.‐Y.</creatorcontrib><creatorcontrib>Chuang, C. C.</creatorcontrib><creatorcontrib>Klein, S. A.</creatorcontrib><creatorcontrib>Lo, M.‐H.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Xie, S.</creatorcontrib><creatorcontrib>Zheng, X.</creatorcontrib><creatorcontrib>Ma, P.‐L.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Phillips, T. J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Wiley_OA刊</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of advances in modeling earth systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, H.‐Y.</au><au>Chuang, C. C.</au><au>Klein, S. A.</au><au>Lo, M.‐H.</au><au>Zhang, Y.</au><au>Xie, S.</au><au>Zheng, X.</au><au>Ma, P.‐L.</au><au>Zhang, Y.</au><au>Phillips, T. J.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models</atitle><jtitle>Journal of advances in modeling earth systems</jtitle><date>2015-12</date><risdate>2015</risdate><volume>7</volume><issue>4</issue><spage>1810</spage><epage>1827</epage><pages>1810-1827</pages><issn>1942-2466</issn><eissn>1942-2466</eissn><abstract>We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two‐step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off‐line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a “Core” integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud‐associated processes relative to observations. Key Points: An improved hindcast approach is proposed for climate model hindcast experiments This approach provides better initial conditions and improves the hindcasts Model developers can easily assess their parameterizations using this approach</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/2015MS000490</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1942-2466
ispartof Journal of advances in modeling earth systems, 2015-12, Vol.7 (4), p.1810-1827
issn 1942-2466
1942-2466
language eng
recordid cdi_osti_scitechconnect_1239491
source Electronic Journals Library; Wiley Online Library; DOAJ Directory of Open Access Journals; Wiley_OA刊
subjects Aerosols
Air temperature
Climate
Climate models
Climatology
Clouds
Data assimilation
Data collection
ENVIRONMENTAL SCIENCES
Evaluation
GCM
GEOSCIENCES
Global climate
hindcast
Humidity
initial conditions
model evaluation
Parameterization
Precipitation
Radiation
Rainfall
Sea ice
Sea ice temperatures
Sea surface
Sea surface temperature
Soil
Soil moisture
Specific humidity
Surface fluxes
Surface temperature
Surface-air temperature relationships
Temperature (air-sea)
transpose-AMIP
Winds
title An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20hindcast%20approach%20for%20evaluation%20and%20diagnosis%20of%20physical%20processes%20in%20global%20climate%20models&rft.jtitle=Journal%20of%20advances%20in%20modeling%20earth%20systems&rft.au=Ma,%20H.%E2%80%90Y.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2015-12&rft.volume=7&rft.issue=4&rft.spage=1810&rft.epage=1827&rft.pages=1810-1827&rft.issn=1942-2466&rft.eissn=1942-2466&rft_id=info:doi/10.1002/2015MS000490&rft_dat=%3Cproquest_osti_%3E1780518177%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093436808&rft_id=info:pmid/&rfr_iscdi=true