An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models
We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the...
Gespeichert in:
Veröffentlicht in: | Journal of advances in modeling earth systems 2015-12, Vol.7 (4), p.1810-1827 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1827 |
---|---|
container_issue | 4 |
container_start_page | 1810 |
container_title | Journal of advances in modeling earth systems |
container_volume | 7 |
creator | Ma, H.‐Y. Chuang, C. C. Klein, S. A. Lo, M.‐H. Zhang, Y. Xie, S. Zheng, X. Ma, P.‐L. Zhang, Y. Phillips, T. J. |
description | We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two‐step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off‐line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a “Core” integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud‐associated processes relative to observations.
Key Points:
An improved hindcast approach is proposed for climate model hindcast experiments
This approach provides better initial conditions and improves the hindcasts
Model developers can easily assess their parameterizations using this approach |
doi_str_mv | 10.1002/2015MS000490 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1239491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780518177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5417-36f2fe194e57af2de15b525a60616ee7d9070eac43453546c14755cda2aea7453</originalsourceid><addsrcrecordid>eNp90U1PHDEMBuARaiUo9MYPiOilBxacTD52jiu0fAnUQ9tzZDIeNiibbMezVPvvG7Q9oB56svXqkWXLTXMq4UICqEsF0jx-BwDdwUFzJDutZkpb--Fdf9h8Yn4BsNYqc9TERRZxvRnLK_ViFXMfkCeBm5pgWImhjIJeMW1xiiULzL3oIz7nwpFFGcRmteMYMInqAzETi5jFcypPNQsprnEisS49JT5pPg6YmD7_rcfNz-vlj6vb2cO3m7urxcMsGC3drLWDGqiuS8bhoHqS5skogxastESu78ABYdCtNq3RNkjtjAk9KiR0NTtuzvZzC0_Rc4gThVUoOVOYvFRtpztZ0dc9qnv_2hJPfh05UEqYqWzZSzcHI-fSuUq__ENfynbM9QSvoGt1a-cwr-p8r8JYmEca_Gas1487L8G_Pce_f07l7Z7_jol2_7X-fvG4VKCUa_8AF9mPlQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093436808</pqid></control><display><type>article</type><title>An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models</title><source>Electronic Journals Library</source><source>Wiley Online Library</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley_OA刊</source><creator>Ma, H.‐Y. ; Chuang, C. C. ; Klein, S. A. ; Lo, M.‐H. ; Zhang, Y. ; Xie, S. ; Zheng, X. ; Ma, P.‐L. ; Zhang, Y. ; Phillips, T. J.</creator><creatorcontrib>Ma, H.‐Y. ; Chuang, C. C. ; Klein, S. A. ; Lo, M.‐H. ; Zhang, Y. ; Xie, S. ; Zheng, X. ; Ma, P.‐L. ; Zhang, Y. ; Phillips, T. J. ; Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States) ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two‐step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off‐line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a “Core” integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud‐associated processes relative to observations.
Key Points:
An improved hindcast approach is proposed for climate model hindcast experiments
This approach provides better initial conditions and improves the hindcasts
Model developers can easily assess their parameterizations using this approach</description><identifier>ISSN: 1942-2466</identifier><identifier>EISSN: 1942-2466</identifier><identifier>DOI: 10.1002/2015MS000490</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>Aerosols ; Air temperature ; Climate ; Climate models ; Climatology ; Clouds ; Data assimilation ; Data collection ; ENVIRONMENTAL SCIENCES ; Evaluation ; GCM ; GEOSCIENCES ; Global climate ; hindcast ; Humidity ; initial conditions ; model evaluation ; Parameterization ; Precipitation ; Radiation ; Rainfall ; Sea ice ; Sea ice temperatures ; Sea surface ; Sea surface temperature ; Soil ; Soil moisture ; Specific humidity ; Surface fluxes ; Surface temperature ; Surface-air temperature relationships ; Temperature (air-sea) ; transpose-AMIP ; Winds</subject><ispartof>Journal of advances in modeling earth systems, 2015-12, Vol.7 (4), p.1810-1827</ispartof><rights>2015. The Authors.</rights><rights>2015. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5417-36f2fe194e57af2de15b525a60616ee7d9070eac43453546c14755cda2aea7453</citedby><cites>FETCH-LOGICAL-c5417-36f2fe194e57af2de15b525a60616ee7d9070eac43453546c14755cda2aea7453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015MS000490$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015MS000490$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1239491$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, H.‐Y.</creatorcontrib><creatorcontrib>Chuang, C. C.</creatorcontrib><creatorcontrib>Klein, S. A.</creatorcontrib><creatorcontrib>Lo, M.‐H.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Xie, S.</creatorcontrib><creatorcontrib>Zheng, X.</creatorcontrib><creatorcontrib>Ma, P.‐L.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Phillips, T. J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models</title><title>Journal of advances in modeling earth systems</title><description>We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two‐step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off‐line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a “Core” integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud‐associated processes relative to observations.
Key Points:
An improved hindcast approach is proposed for climate model hindcast experiments
This approach provides better initial conditions and improves the hindcasts
Model developers can easily assess their parameterizations using this approach</description><subject>Aerosols</subject><subject>Air temperature</subject><subject>Climate</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Clouds</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Evaluation</subject><subject>GCM</subject><subject>GEOSCIENCES</subject><subject>Global climate</subject><subject>hindcast</subject><subject>Humidity</subject><subject>initial conditions</subject><subject>model evaluation</subject><subject>Parameterization</subject><subject>Precipitation</subject><subject>Radiation</subject><subject>Rainfall</subject><subject>Sea ice</subject><subject>Sea ice temperatures</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Soil</subject><subject>Soil moisture</subject><subject>Specific humidity</subject><subject>Surface fluxes</subject><subject>Surface temperature</subject><subject>Surface-air temperature relationships</subject><subject>Temperature (air-sea)</subject><subject>transpose-AMIP</subject><subject>Winds</subject><issn>1942-2466</issn><issn>1942-2466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp90U1PHDEMBuARaiUo9MYPiOilBxacTD52jiu0fAnUQ9tzZDIeNiibbMezVPvvG7Q9oB56svXqkWXLTXMq4UICqEsF0jx-BwDdwUFzJDutZkpb--Fdf9h8Yn4BsNYqc9TERRZxvRnLK_ViFXMfkCeBm5pgWImhjIJeMW1xiiULzL3oIz7nwpFFGcRmteMYMInqAzETi5jFcypPNQsprnEisS49JT5pPg6YmD7_rcfNz-vlj6vb2cO3m7urxcMsGC3drLWDGqiuS8bhoHqS5skogxastESu78ABYdCtNq3RNkjtjAk9KiR0NTtuzvZzC0_Rc4gThVUoOVOYvFRtpztZ0dc9qnv_2hJPfh05UEqYqWzZSzcHI-fSuUq__ENfynbM9QSvoGt1a-cwr-p8r8JYmEca_Gas1487L8G_Pce_f07l7Z7_jol2_7X-fvG4VKCUa_8AF9mPlQ</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Ma, H.‐Y.</creator><creator>Chuang, C. C.</creator><creator>Klein, S. A.</creator><creator>Lo, M.‐H.</creator><creator>Zhang, Y.</creator><creator>Xie, S.</creator><creator>Zheng, X.</creator><creator>Ma, P.‐L.</creator><creator>Zhang, Y.</creator><creator>Phillips, T. J.</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union (AGU)</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>201512</creationdate><title>An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models</title><author>Ma, H.‐Y. ; Chuang, C. C. ; Klein, S. A. ; Lo, M.‐H. ; Zhang, Y. ; Xie, S. ; Zheng, X. ; Ma, P.‐L. ; Zhang, Y. ; Phillips, T. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5417-36f2fe194e57af2de15b525a60616ee7d9070eac43453546c14755cda2aea7453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aerosols</topic><topic>Air temperature</topic><topic>Climate</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Clouds</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Evaluation</topic><topic>GCM</topic><topic>GEOSCIENCES</topic><topic>Global climate</topic><topic>hindcast</topic><topic>Humidity</topic><topic>initial conditions</topic><topic>model evaluation</topic><topic>Parameterization</topic><topic>Precipitation</topic><topic>Radiation</topic><topic>Rainfall</topic><topic>Sea ice</topic><topic>Sea ice temperatures</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Soil</topic><topic>Soil moisture</topic><topic>Specific humidity</topic><topic>Surface fluxes</topic><topic>Surface temperature</topic><topic>Surface-air temperature relationships</topic><topic>Temperature (air-sea)</topic><topic>transpose-AMIP</topic><topic>Winds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, H.‐Y.</creatorcontrib><creatorcontrib>Chuang, C. C.</creatorcontrib><creatorcontrib>Klein, S. A.</creatorcontrib><creatorcontrib>Lo, M.‐H.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Xie, S.</creatorcontrib><creatorcontrib>Zheng, X.</creatorcontrib><creatorcontrib>Ma, P.‐L.</creatorcontrib><creatorcontrib>Zhang, Y.</creatorcontrib><creatorcontrib>Phillips, T. J.</creatorcontrib><creatorcontrib>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Wiley_OA刊</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of advances in modeling earth systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, H.‐Y.</au><au>Chuang, C. C.</au><au>Klein, S. A.</au><au>Lo, M.‐H.</au><au>Zhang, Y.</au><au>Xie, S.</au><au>Zheng, X.</au><au>Ma, P.‐L.</au><au>Zhang, Y.</au><au>Phillips, T. J.</au><aucorp>Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)</aucorp><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models</atitle><jtitle>Journal of advances in modeling earth systems</jtitle><date>2015-12</date><risdate>2015</risdate><volume>7</volume><issue>4</issue><spage>1810</spage><epage>1827</epage><pages>1810-1827</pages><issn>1942-2466</issn><eissn>1942-2466</eissn><abstract>We present an improved procedure of generating initial conditions (ICs) for climate model hindcast experiments with specified sea surface temperature and sea ice. The motivation is to minimize errors in the ICs and lead to a better evaluation of atmospheric parameterizations' performance in the hindcast mode. We apply state variables (horizontal velocities, temperature, and specific humidity) from the operational analysis/reanalysis for the atmospheric initial states. Without a data assimilation system, we apply a two‐step process to obtain other necessary variables to initialize both the atmospheric (e.g., aerosols and clouds) and land models (e.g., soil moisture). First, we nudge only the model horizontal velocities toward operational analysis/reanalysis values, given a 6 h relaxation time scale, to obtain all necessary variables. Compared to the original strategy in which horizontal velocities, temperature, and specific humidity are nudged, the revised approach produces a better representation of initial aerosols and cloud fields which are more consistent and closer to observations and model's preferred climatology. Second, we obtain land ICs from an off‐line land model simulation forced with observed precipitation, winds, and surface fluxes. This approach produces more realistic soil moisture in the land ICs. With this refined procedure, the simulated precipitation, clouds, radiation, and surface air temperature over land are improved in the Day 2 mean hindcasts. Following this procedure, we propose a “Core” integration suite which provides an easily repeatable test allowing model developers to rapidly assess the impacts of various parameterization changes on the fidelity of modeled cloud‐associated processes relative to observations.
Key Points:
An improved hindcast approach is proposed for climate model hindcast experiments
This approach provides better initial conditions and improves the hindcasts
Model developers can easily assess their parameterizations using this approach</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/2015MS000490</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1942-2466 |
ispartof | Journal of advances in modeling earth systems, 2015-12, Vol.7 (4), p.1810-1827 |
issn | 1942-2466 1942-2466 |
language | eng |
recordid | cdi_osti_scitechconnect_1239491 |
source | Electronic Journals Library; Wiley Online Library; DOAJ Directory of Open Access Journals; Wiley_OA刊 |
subjects | Aerosols Air temperature Climate Climate models Climatology Clouds Data assimilation Data collection ENVIRONMENTAL SCIENCES Evaluation GCM GEOSCIENCES Global climate hindcast Humidity initial conditions model evaluation Parameterization Precipitation Radiation Rainfall Sea ice Sea ice temperatures Sea surface Sea surface temperature Soil Soil moisture Specific humidity Surface fluxes Surface temperature Surface-air temperature relationships Temperature (air-sea) transpose-AMIP Winds |
title | An improved hindcast approach for evaluation and diagnosis of physical processes in global climate models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T15%3A50%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20hindcast%20approach%20for%20evaluation%20and%20diagnosis%20of%20physical%20processes%20in%20global%20climate%20models&rft.jtitle=Journal%20of%20advances%20in%20modeling%20earth%20systems&rft.au=Ma,%20H.%E2%80%90Y.&rft.aucorp=Lawrence%20Livermore%20National%20Lab.%20(LLNL),%20Livermore,%20CA%20(United%20States)&rft.date=2015-12&rft.volume=7&rft.issue=4&rft.spage=1810&rft.epage=1827&rft.pages=1810-1827&rft.issn=1942-2466&rft.eissn=1942-2466&rft_id=info:doi/10.1002/2015MS000490&rft_dat=%3Cproquest_osti_%3E1780518177%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2093436808&rft_id=info:pmid/&rfr_iscdi=true |