Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions

This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2015-10, Vol.49 (20), p.12535-12542
Hauptverfasser: Kelly, Jarod C, Sullivan, John L, Burnham, Andrew, Elgowainy, Amgad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12542
container_issue 20
container_start_page 12535
container_title Environmental science & technology
container_volume 49
creator Kelly, Jarod C
Sullivan, John L
Burnham, Andrew
Elgowainy, Amgad
description This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory’s GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15–0.25, and 0.25–0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.
doi_str_mv 10.1021/acs.est.5b03192
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1237922</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735916668</sourcerecordid><originalsourceid>FETCH-LOGICAL-a573t-84dff3407046eb04cf5da3725a9bd5da9a03c6bcb77769919f09047f344c12d23</originalsourceid><addsrcrecordid>eNqNkd1r2zAUxcXYWNJ2z3sbZn0pDKdXkiVZjyP0CzIK-34Tsny9KDh2ZsmD_veVm7SDwaAg0AX9ztGRDiFvKSwoMHpuXVhgiAtRAaeavSBzKhjkohT0JZkDUJ5rLn_OyFEIGwBgHMrXZMYk17ygxZzUN9uddTFkfZN9x7V3LWY_0P9ax-wz1qOLvu-yP95mn2zEwds2-zJWIfo4PpyktfIN5su7SXg1IHbrfgxptCG72PoQEhVOyKvGtgHfHPZj8u3y4uvyOl_dXt0sP65yKxSPeVnUTcMLUFBIrKBwjagtV0xYXdVp1Ba4k5WrlFJSa6ob0FCoJCkcZTXjx-T93rdPCU1wPqJbu77r0EVDGVeaTdDZHtoN_e8xfZ5JMR22re0wRTdUcaGplLJ8BsoEMMmYTujpP-imH4cuvXaiSgBNARJ1vqfc0IcwYGN2g9_a4c5QMFOhJhVqJvWh0KR4d_Adqy3WT_xjgwn4sAcm5d87_2N3D4d9qcQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1728009100</pqid></control><display><type>article</type><title>Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions</title><source>ACS Publications</source><source>MEDLINE</source><creator>Kelly, Jarod C ; Sullivan, John L ; Burnham, Andrew ; Elgowainy, Amgad</creator><creatorcontrib>Kelly, Jarod C ; Sullivan, John L ; Burnham, Andrew ; Elgowainy, Amgad ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory’s GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15–0.25, and 0.25–0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.5b03192</identifier><identifier>PMID: 26393414</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Aluminum ; Carbon ; Emissions ; Emissions control ; Environmental science ; Greenhouse Effect ; Greenhouse gases ; Magnesium ; Models, Theoretical ; Motor Vehicles ; Plastics ; Ratios ; Steel ; Vehicle Emissions - analysis</subject><ispartof>Environmental science &amp; technology, 2015-10, Vol.49 (20), p.12535-12542</ispartof><rights>Copyright © 2015 American Chemical Society</rights><rights>Copyright American Chemical Society Oct 20, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a573t-84dff3407046eb04cf5da3725a9bd5da9a03c6bcb77769919f09047f344c12d23</citedby><cites>FETCH-LOGICAL-a573t-84dff3407046eb04cf5da3725a9bd5da9a03c6bcb77769919f09047f344c12d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.5b03192$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.5b03192$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26393414$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1237922$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kelly, Jarod C</creatorcontrib><creatorcontrib>Sullivan, John L</creatorcontrib><creatorcontrib>Burnham, Andrew</creatorcontrib><creatorcontrib>Elgowainy, Amgad</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory’s GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15–0.25, and 0.25–0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.</description><subject>Aluminum</subject><subject>Carbon</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>Environmental science</subject><subject>Greenhouse Effect</subject><subject>Greenhouse gases</subject><subject>Magnesium</subject><subject>Models, Theoretical</subject><subject>Motor Vehicles</subject><subject>Plastics</subject><subject>Ratios</subject><subject>Steel</subject><subject>Vehicle Emissions - analysis</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkd1r2zAUxcXYWNJ2z3sbZn0pDKdXkiVZjyP0CzIK-34Tsny9KDh2ZsmD_veVm7SDwaAg0AX9ztGRDiFvKSwoMHpuXVhgiAtRAaeavSBzKhjkohT0JZkDUJ5rLn_OyFEIGwBgHMrXZMYk17ygxZzUN9uddTFkfZN9x7V3LWY_0P9ax-wz1qOLvu-yP95mn2zEwds2-zJWIfo4PpyktfIN5su7SXg1IHbrfgxptCG72PoQEhVOyKvGtgHfHPZj8u3y4uvyOl_dXt0sP65yKxSPeVnUTcMLUFBIrKBwjagtV0xYXdVp1Ba4k5WrlFJSa6ob0FCoJCkcZTXjx-T93rdPCU1wPqJbu77r0EVDGVeaTdDZHtoN_e8xfZ5JMR22re0wRTdUcaGplLJ8BsoEMMmYTujpP-imH4cuvXaiSgBNARJ1vqfc0IcwYGN2g9_a4c5QMFOhJhVqJvWh0KR4d_Adqy3WT_xjgwn4sAcm5d87_2N3D4d9qcQ</recordid><startdate>20151020</startdate><enddate>20151020</enddate><creator>Kelly, Jarod C</creator><creator>Sullivan, John L</creator><creator>Burnham, Andrew</creator><creator>Elgowainy, Amgad</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><scope>7TV</scope><scope>OTOTI</scope></search><sort><creationdate>20151020</creationdate><title>Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions</title><author>Kelly, Jarod C ; Sullivan, John L ; Burnham, Andrew ; Elgowainy, Amgad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a573t-84dff3407046eb04cf5da3725a9bd5da9a03c6bcb77769919f09047f344c12d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aluminum</topic><topic>Carbon</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>Environmental science</topic><topic>Greenhouse Effect</topic><topic>Greenhouse gases</topic><topic>Magnesium</topic><topic>Models, Theoretical</topic><topic>Motor Vehicles</topic><topic>Plastics</topic><topic>Ratios</topic><topic>Steel</topic><topic>Vehicle Emissions - analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kelly, Jarod C</creatorcontrib><creatorcontrib>Sullivan, John L</creatorcontrib><creatorcontrib>Burnham, Andrew</creatorcontrib><creatorcontrib>Elgowainy, Amgad</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Pollution Abstracts</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kelly, Jarod C</au><au>Sullivan, John L</au><au>Burnham, Andrew</au><au>Elgowainy, Amgad</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2015-10-20</date><risdate>2015</risdate><volume>49</volume><issue>20</issue><spage>12535</spage><epage>12542</epage><pages>12535-12542</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>This study examines the vehicle-cycle and vehicle total life-cycle impacts of substituting lightweight materials into vehicles. We determine part-based greenhouse gas (GHG) emission ratios by collecting material substitution data and evaluating that alongside known mass-based GHG ratios (using and updating Argonne National Laboratory’s GREET model) associated with material pair substitutions. Several vehicle parts are lightweighted via material substitution, using substitution ratios from a U.S. Department of Energy report, to determine GHG emissions. We then examine fuel-cycle GHG reductions from lightweighting. The fuel reduction value methodology is applied using FRV estimates of 0.15–0.25, and 0.25–0.5 L/(100km·100 kg), with and without powertrain adjustments, respectively. GHG breakeven values are derived for both driving distance and material substitution ratio. While material substitution can reduce vehicle weight, it often increases vehicle-cycle GHGs. It is likely that replacing steel (the dominant vehicle material) with wrought aluminum, carbon fiber reinforced plastic (CRFP), or magnesium will increase vehicle-cycle GHGs. However, lifetime fuel economy benefits often outweigh the vehicle-cycle, resulting in a net total life-cycle GHG benefit. This is the case for steel replaced by wrought aluminum in all assumed cases, and for CFRP and magnesium except for high substitution ratio and low FRV.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26393414</pmid><doi>10.1021/acs.est.5b03192</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2015-10, Vol.49 (20), p.12535-12542
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_1237922
source ACS Publications; MEDLINE
subjects Aluminum
Carbon
Emissions
Emissions control
Environmental science
Greenhouse Effect
Greenhouse gases
Magnesium
Models, Theoretical
Motor Vehicles
Plastics
Ratios
Steel
Vehicle Emissions - analysis
title Impacts of Vehicle Weight Reduction via Material Substitution on Life-Cycle Greenhouse Gas Emissions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A50%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impacts%20of%20Vehicle%20Weight%20Reduction%20via%20Material%20Substitution%20on%20Life-Cycle%20Greenhouse%20Gas%20Emissions&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Kelly,%20Jarod%20C&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-10-20&rft.volume=49&rft.issue=20&rft.spage=12535&rft.epage=12542&rft.pages=12535-12542&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/acs.est.5b03192&rft_dat=%3Cproquest_osti_%3E1735916668%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1728009100&rft_id=info:pmid/26393414&rfr_iscdi=true