Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states

Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of sign...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering 2016-01, Vol.112 (C), p.307-319
Hauptverfasser: Eckert-Gallup, Aubrey C., Sallaberry, Cédric J., Dallman, Ann R., Neary, Vincent S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 319
container_issue C
container_start_page 307
container_title Ocean engineering
container_volume 112
creator Eckert-Gallup, Aubrey C.
Sallaberry, Cédric J.
Dallman, Ann R.
Neary, Vincent S.
description Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (Hs) and either energy period (Te) or peak period (Tp) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmental contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. These modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures •An enhanced application of the I-FORM for generating environmental contours is described.•Principal component analysis is used to create an uncorrelated representation of sea state data.•New distribution and parameter fitting techniques employed to model sea state variable relations.•This methodology is applicable to the field of survivability analysis for marine structures.•Modifications generate better representations of extreme contours than to the current method.
doi_str_mv 10.1016/j.oceaneng.2015.12.018
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1237665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0029801815006721</els_id><sourcerecordid>1765946613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-7fe34de24b0b8afa95ba2e5f61da671ad6225c4a89101c91bd9750602e3e728f3</originalsourceid><addsrcrecordid>eNqNkUGP0zAUhCMEEmXhLyCLU_eQYDuxk9yoKpZdadEiBGfLsV-2r0rsYLsV_WX8PVx19wwn61kzo9F8RfGe0YpRJj_uK29AO3CPFadMVIxXlHUvihXr2roUXHQvixWlvC-7_P-6eBPjnlIqJa1XxZ_NskxodELviB_JEtAZXPREjJ8Xn1MT0U5Pp4iRrL9tN9f5tATnJfgjWLL3mBX5GPSAE6YTsRhTwOFwTowkeZJ2QNAdIUQgI4aYSh8sBBJgwmfTDGnnLVnflTcP379ek9GHHAoWTUL3SOB3CjADiaBJTDpBfFu8GvUU4d3Te1X8vPn8Y3tb3j98udtu7kvTiDqV7Qh1Y4E3Ax06PepeDJqDGCWzWrZMW8m5MI3u-jyl6dlg-1ZQSTnU0PJurK-KD5dcHxOqaDCB2RnvHJikGK9bKUUWrS-ivMOvA8SkZowGpilT8YeoWNtRUefY5j-kUvSNlKzOUnmRmuBjDDCqDGfW4aQYVWfyaq-eyasz-dxHZcLZ-OlihDzMESGce4Mzec5wrm09_iviLwjhves</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1765946613</pqid></control><display><type>article</type><title>Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states</title><source>Elsevier ScienceDirect Journals</source><creator>Eckert-Gallup, Aubrey C. ; Sallaberry, Cédric J. ; Dallman, Ann R. ; Neary, Vincent S.</creator><creatorcontrib>Eckert-Gallup, Aubrey C. ; Sallaberry, Cédric J. ; Dallman, Ann R. ; Neary, Vincent S. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (Hs) and either energy period (Te) or peak period (Tp) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmental contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. These modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures •An enhanced application of the I-FORM for generating environmental contours is described.•Principal component analysis is used to create an uncorrelated representation of sea state data.•New distribution and parameter fitting techniques employed to model sea state variable relations.•This methodology is applicable to the field of survivability analysis for marine structures.•Modifications generate better representations of extreme contours than to the current method.</description><identifier>ISSN: 0029-8018</identifier><identifier>EISSN: 1873-5258</identifier><identifier>DOI: 10.1016/j.oceaneng.2015.12.018</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Contours ; ENGINEERING ; Environmental contours ; Environmental extremism ; ENVIRONMENTAL SCIENCES ; Extreme sea state characterization ; Inverse FORM ; Marine ; Mathematical models ; Principal component analysis ; Representations ; Sea states</subject><ispartof>Ocean engineering, 2016-01, Vol.112 (C), p.307-319</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-7fe34de24b0b8afa95ba2e5f61da671ad6225c4a89101c91bd9750602e3e728f3</citedby><cites>FETCH-LOGICAL-c453t-7fe34de24b0b8afa95ba2e5f61da671ad6225c4a89101c91bd9750602e3e728f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0029801815006721$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1237665$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Eckert-Gallup, Aubrey C.</creatorcontrib><creatorcontrib>Sallaberry, Cédric J.</creatorcontrib><creatorcontrib>Dallman, Ann R.</creatorcontrib><creatorcontrib>Neary, Vincent S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states</title><title>Ocean engineering</title><description>Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (Hs) and either energy period (Te) or peak period (Tp) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmental contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. These modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures •An enhanced application of the I-FORM for generating environmental contours is described.•Principal component analysis is used to create an uncorrelated representation of sea state data.•New distribution and parameter fitting techniques employed to model sea state variable relations.•This methodology is applicable to the field of survivability analysis for marine structures.•Modifications generate better representations of extreme contours than to the current method.</description><subject>Contours</subject><subject>ENGINEERING</subject><subject>Environmental contours</subject><subject>Environmental extremism</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Extreme sea state characterization</subject><subject>Inverse FORM</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Principal component analysis</subject><subject>Representations</subject><subject>Sea states</subject><issn>0029-8018</issn><issn>1873-5258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUGP0zAUhCMEEmXhLyCLU_eQYDuxk9yoKpZdadEiBGfLsV-2r0rsYLsV_WX8PVx19wwn61kzo9F8RfGe0YpRJj_uK29AO3CPFadMVIxXlHUvihXr2roUXHQvixWlvC-7_P-6eBPjnlIqJa1XxZ_NskxodELviB_JEtAZXPREjJ8Xn1MT0U5Pp4iRrL9tN9f5tATnJfgjWLL3mBX5GPSAE6YTsRhTwOFwTowkeZJ2QNAdIUQgI4aYSh8sBBJgwmfTDGnnLVnflTcP379ek9GHHAoWTUL3SOB3CjADiaBJTDpBfFu8GvUU4d3Te1X8vPn8Y3tb3j98udtu7kvTiDqV7Qh1Y4E3Ax06PepeDJqDGCWzWrZMW8m5MI3u-jyl6dlg-1ZQSTnU0PJurK-KD5dcHxOqaDCB2RnvHJikGK9bKUUWrS-ivMOvA8SkZowGpilT8YeoWNtRUefY5j-kUvSNlKzOUnmRmuBjDDCqDGfW4aQYVWfyaq-eyasz-dxHZcLZ-OlihDzMESGce4Mzec5wrm09_iviLwjhves</recordid><startdate>20160115</startdate><enddate>20160115</enddate><creator>Eckert-Gallup, Aubrey C.</creator><creator>Sallaberry, Cédric J.</creator><creator>Dallman, Ann R.</creator><creator>Neary, Vincent S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160115</creationdate><title>Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states</title><author>Eckert-Gallup, Aubrey C. ; Sallaberry, Cédric J. ; Dallman, Ann R. ; Neary, Vincent S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-7fe34de24b0b8afa95ba2e5f61da671ad6225c4a89101c91bd9750602e3e728f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Contours</topic><topic>ENGINEERING</topic><topic>Environmental contours</topic><topic>Environmental extremism</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Extreme sea state characterization</topic><topic>Inverse FORM</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Principal component analysis</topic><topic>Representations</topic><topic>Sea states</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckert-Gallup, Aubrey C.</creatorcontrib><creatorcontrib>Sallaberry, Cédric J.</creatorcontrib><creatorcontrib>Dallman, Ann R.</creatorcontrib><creatorcontrib>Neary, Vincent S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckert-Gallup, Aubrey C.</au><au>Sallaberry, Cédric J.</au><au>Dallman, Ann R.</au><au>Neary, Vincent S.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states</atitle><jtitle>Ocean engineering</jtitle><date>2016-01-15</date><risdate>2016</risdate><volume>112</volume><issue>C</issue><spage>307</spage><epage>319</epage><pages>307-319</pages><issn>0029-8018</issn><eissn>1873-5258</eissn><abstract>Environmental contours describing extreme sea states are generated as the input for numerical or physical model simulations as a part of the standard current practice for designing marine structures to survive extreme sea states. These environmental contours are characterized by combinations of significant wave height (Hs) and either energy period (Te) or peak period (Tp) values calculated for a given recurrence interval using a set of data based on hindcast simulations or buoy observations over a sufficient period of record. The use of the inverse first-order reliability method (I-FORM) is a standard design practice for generating environmental contours. This paper develops enhanced methodologies for data analysis prior to the application of the I-FORM, including the use of principal component analysis (PCA) to create an uncorrelated representation of the variables under consideration as well as new distribution and parameter fitting techniques. These modifications better represent the measured data and, therefore, should contribute to the development of more realistic representations of environmental contours of extreme sea states for determining design loads for marine structures •An enhanced application of the I-FORM for generating environmental contours is described.•Principal component analysis is used to create an uncorrelated representation of sea state data.•New distribution and parameter fitting techniques employed to model sea state variable relations.•This methodology is applicable to the field of survivability analysis for marine structures.•Modifications generate better representations of extreme contours than to the current method.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.oceaneng.2015.12.018</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-8018
ispartof Ocean engineering, 2016-01, Vol.112 (C), p.307-319
issn 0029-8018
1873-5258
language eng
recordid cdi_osti_scitechconnect_1237665
source Elsevier ScienceDirect Journals
subjects Contours
ENGINEERING
Environmental contours
Environmental extremism
ENVIRONMENTAL SCIENCES
Extreme sea state characterization
Inverse FORM
Marine
Mathematical models
Principal component analysis
Representations
Sea states
title Application of principal component analysis (PCA) and improved joint probability distributions to the inverse first-order reliability method (I-FORM) for predicting extreme sea states
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20principal%20component%20analysis%20(PCA)%20and%20improved%20joint%20probability%20distributions%20to%20the%20inverse%20first-order%20reliability%20method%20(I-FORM)%20for%20predicting%20extreme%20sea%20states&rft.jtitle=Ocean%20engineering&rft.au=Eckert-Gallup,%20Aubrey%20C.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2016-01-15&rft.volume=112&rft.issue=C&rft.spage=307&rft.epage=319&rft.pages=307-319&rft.issn=0029-8018&rft.eissn=1873-5258&rft_id=info:doi/10.1016/j.oceaneng.2015.12.018&rft_dat=%3Cproquest_osti_%3E1765946613%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1765946613&rft_id=info:pmid/&rft_els_id=S0029801815006721&rfr_iscdi=true