Detection and quantification of solute clusters in a nanostructured ferritic alloy

•Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency.•Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP.•High densities, 1.8×1024m−3, of solute clusters were detected in as-milled flakes of 14YWT.•Lower densities...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2015-07, Vol.462 (C), p.428-432
Hauptverfasser: Miller, M.K., Reinhard, D., Larson, D.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 432
container_issue C
container_start_page 428
container_title Journal of nuclear materials
container_volume 462
creator Miller, M.K.
Reinhard, D.
Larson, D.J.
description •Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency.•Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP.•High densities, 1.8×1024m−3, of solute clusters were detected in as-milled flakes of 14YWT.•Lower densities, 1.2×1024m−3, were detected in the stir zone of a FSW.•Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8×1024m−3 and 1.2×1024m−3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.
doi_str_mv 10.1016/j.jnucmat.2014.12.107
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1237625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311514010617</els_id><sourcerecordid>1770382473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-488b47f23b311b23cd69c3cfe6b63625d50de6f804f81ae56b0bdb20407f5dc03</originalsourceid><addsrcrecordid>eNqNkcFKJDEQhsOisKPuIyw0e_IyYyXpdDInEXVVEATRc0gnFTZDT6JJWvDtzex411Og-Ornq_yE_KawokCHs81qE2e7NXXFgPYrytpY_iALqiRf9orBAVkAMLbklIqf5KiUDQCINYgFebzCiraGFDsTXfc6m1iDD9b8HyXflTTNFTs7zaViLl1oYBdNTKXm2dY5o-s85hxqsJ2ZpvR-Qg69mQr--nyPyfPf66fL2-X9w83d5cX90golahNTYy8942PTGhm3blhbbj0O48AHJpwAh4NX0HtFDYphhNGNDHqQXjgL_Jj82ec2laCLDe2QfzbF2O7RlHHZQhp0uodecnqdsVS9DcXiNJmIaS6aSglcsV7yb6CcKb4GpRoq9qjNqZSMXr_ksDX5XVPQu070Rn92onedNJ02lm3vfL-H7V_eAuadNkaLLuSdtUvhi4QP-lyYGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732839088</pqid></control><display><type>article</type><title>Detection and quantification of solute clusters in a nanostructured ferritic alloy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Miller, M.K. ; Reinhard, D. ; Larson, D.J.</creator><creatorcontrib>Miller, M.K. ; Reinhard, D. ; Larson, D.J. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>•Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency.•Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP.•High densities, 1.8×1024m−3, of solute clusters were detected in as-milled flakes of 14YWT.•Lower densities, 1.2×1024m−3, were detected in the stir zone of a FSW.•Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8×1024m−3 and 1.2×1024m−3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2014.12.107</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>atom probe tomography ; Atomic properties ; Clusters ; Density ; Electrodes ; Ferrite ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; MATERIALS SCIENCE ; Nanostructure ; nanostructured ferritic alloys ; Radiation tolerance ; single atom detector ; solute clusters ; Steels ; Titanium</subject><ispartof>Journal of nuclear materials, 2015-07, Vol.462 (C), p.428-432</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-488b47f23b311b23cd69c3cfe6b63625d50de6f804f81ae56b0bdb20407f5dc03</citedby><cites>FETCH-LOGICAL-c585t-488b47f23b311b23cd69c3cfe6b63625d50de6f804f81ae56b0bdb20407f5dc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2014.12.107$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1237625$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, M.K.</creatorcontrib><creatorcontrib>Reinhard, D.</creatorcontrib><creatorcontrib>Larson, D.J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Detection and quantification of solute clusters in a nanostructured ferritic alloy</title><title>Journal of nuclear materials</title><description>•Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency.•Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP.•High densities, 1.8×1024m−3, of solute clusters were detected in as-milled flakes of 14YWT.•Lower densities, 1.2×1024m−3, were detected in the stir zone of a FSW.•Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8×1024m−3 and 1.2×1024m−3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.</description><subject>atom probe tomography</subject><subject>Atomic properties</subject><subject>Clusters</subject><subject>Density</subject><subject>Electrodes</subject><subject>Ferrite</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>MATERIALS SCIENCE</subject><subject>Nanostructure</subject><subject>nanostructured ferritic alloys</subject><subject>Radiation tolerance</subject><subject>single atom detector</subject><subject>solute clusters</subject><subject>Steels</subject><subject>Titanium</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkcFKJDEQhsOisKPuIyw0e_IyYyXpdDInEXVVEATRc0gnFTZDT6JJWvDtzex411Og-Ornq_yE_KawokCHs81qE2e7NXXFgPYrytpY_iALqiRf9orBAVkAMLbklIqf5KiUDQCINYgFebzCiraGFDsTXfc6m1iDD9b8HyXflTTNFTs7zaViLl1oYBdNTKXm2dY5o-s85hxqsJ2ZpvR-Qg69mQr--nyPyfPf66fL2-X9w83d5cX90golahNTYy8942PTGhm3blhbbj0O48AHJpwAh4NX0HtFDYphhNGNDHqQXjgL_Jj82ec2laCLDe2QfzbF2O7RlHHZQhp0uodecnqdsVS9DcXiNJmIaS6aSglcsV7yb6CcKb4GpRoq9qjNqZSMXr_ksDX5XVPQu070Rn92onedNJ02lm3vfL-H7V_eAuadNkaLLuSdtUvhi4QP-lyYGg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Miller, M.K.</creator><creator>Reinhard, D.</creator><creator>Larson, D.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150701</creationdate><title>Detection and quantification of solute clusters in a nanostructured ferritic alloy</title><author>Miller, M.K. ; Reinhard, D. ; Larson, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-488b47f23b311b23cd69c3cfe6b63625d50de6f804f81ae56b0bdb20407f5dc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>atom probe tomography</topic><topic>Atomic properties</topic><topic>Clusters</topic><topic>Density</topic><topic>Electrodes</topic><topic>Ferrite</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>MATERIALS SCIENCE</topic><topic>Nanostructure</topic><topic>nanostructured ferritic alloys</topic><topic>Radiation tolerance</topic><topic>single atom detector</topic><topic>solute clusters</topic><topic>Steels</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, M.K.</creatorcontrib><creatorcontrib>Reinhard, D.</creatorcontrib><creatorcontrib>Larson, D.J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, M.K.</au><au>Reinhard, D.</au><au>Larson, D.J.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and quantification of solute clusters in a nanostructured ferritic alloy</atitle><jtitle>Journal of nuclear materials</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>462</volume><issue>C</issue><spage>428</spage><epage>432</epage><pages>428-432</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>•Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency.•Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP.•High densities, 1.8×1024m−3, of solute clusters were detected in as-milled flakes of 14YWT.•Lower densities, 1.2×1024m−3, were detected in the stir zone of a FSW.•Vacancies stabilize the clusters, which retard diffusion and confers excellent stability. A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8×1024m−3 and 1.2×1024m−3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2014.12.107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2015-07, Vol.462 (C), p.428-432
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1237625
source Access via ScienceDirect (Elsevier)
subjects atom probe tomography
Atomic properties
Clusters
Density
Electrodes
Ferrite
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
MATERIALS SCIENCE
Nanostructure
nanostructured ferritic alloys
Radiation tolerance
single atom detector
solute clusters
Steels
Titanium
title Detection and quantification of solute clusters in a nanostructured ferritic alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20quantification%20of%20solute%20clusters%20in%20a%20nanostructured%20ferritic%20alloy&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Miller,%20M.K.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-07-01&rft.volume=462&rft.issue=C&rft.spage=428&rft.epage=432&rft.pages=428-432&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2014.12.107&rft_dat=%3Cproquest_osti_%3E1770382473%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732839088&rft_id=info:pmid/&rft_els_id=S0022311514010617&rfr_iscdi=true