Detection and quantification of solute clusters in a nanostructured ferritic alloy
•Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency.•Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP.•High densities, 1.8×1024m−3, of solute clusters were detected in as-milled flakes of 14YWT.•Lower densities...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2015-07, Vol.462 (C), p.428-432 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 432 |
---|---|
container_issue | C |
container_start_page | 428 |
container_title | Journal of nuclear materials |
container_volume | 462 |
creator | Miller, M.K. Reinhard, D. Larson, D.J. |
description | •Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency.•Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP.•High densities, 1.8×1024m−3, of solute clusters were detected in as-milled flakes of 14YWT.•Lower densities, 1.2×1024m−3, were detected in the stir zone of a FSW.•Vacancies stabilize the clusters, which retard diffusion and confers excellent stability.
A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8×1024m−3 and 1.2×1024m−3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys. |
doi_str_mv | 10.1016/j.jnucmat.2014.12.107 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1237625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311514010617</els_id><sourcerecordid>1770382473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-488b47f23b311b23cd69c3cfe6b63625d50de6f804f81ae56b0bdb20407f5dc03</originalsourceid><addsrcrecordid>eNqNkcFKJDEQhsOisKPuIyw0e_IyYyXpdDInEXVVEATRc0gnFTZDT6JJWvDtzex411Og-Ornq_yE_KawokCHs81qE2e7NXXFgPYrytpY_iALqiRf9orBAVkAMLbklIqf5KiUDQCINYgFebzCiraGFDsTXfc6m1iDD9b8HyXflTTNFTs7zaViLl1oYBdNTKXm2dY5o-s85hxqsJ2ZpvR-Qg69mQr--nyPyfPf66fL2-X9w83d5cX90golahNTYy8942PTGhm3blhbbj0O48AHJpwAh4NX0HtFDYphhNGNDHqQXjgL_Jj82ec2laCLDe2QfzbF2O7RlHHZQhp0uodecnqdsVS9DcXiNJmIaS6aSglcsV7yb6CcKb4GpRoq9qjNqZSMXr_ksDX5XVPQu070Rn92onedNJ02lm3vfL-H7V_eAuadNkaLLuSdtUvhi4QP-lyYGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732839088</pqid></control><display><type>article</type><title>Detection and quantification of solute clusters in a nanostructured ferritic alloy</title><source>Access via ScienceDirect (Elsevier)</source><creator>Miller, M.K. ; Reinhard, D. ; Larson, D.J.</creator><creatorcontrib>Miller, M.K. ; Reinhard, D. ; Larson, D.J. ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>•Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency.•Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP.•High densities, 1.8×1024m−3, of solute clusters were detected in as-milled flakes of 14YWT.•Lower densities, 1.2×1024m−3, were detected in the stir zone of a FSW.•Vacancies stabilize the clusters, which retard diffusion and confers excellent stability.
A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8×1024m−3 and 1.2×1024m−3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2014.12.107</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>atom probe tomography ; Atomic properties ; Clusters ; Density ; Electrodes ; Ferrite ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; MATERIALS SCIENCE ; Nanostructure ; nanostructured ferritic alloys ; Radiation tolerance ; single atom detector ; solute clusters ; Steels ; Titanium</subject><ispartof>Journal of nuclear materials, 2015-07, Vol.462 (C), p.428-432</ispartof><rights>2014 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-488b47f23b311b23cd69c3cfe6b63625d50de6f804f81ae56b0bdb20407f5dc03</citedby><cites>FETCH-LOGICAL-c585t-488b47f23b311b23cd69c3cfe6b63625d50de6f804f81ae56b0bdb20407f5dc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2014.12.107$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1237625$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Miller, M.K.</creatorcontrib><creatorcontrib>Reinhard, D.</creatorcontrib><creatorcontrib>Larson, D.J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Detection and quantification of solute clusters in a nanostructured ferritic alloy</title><title>Journal of nuclear materials</title><description>•Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency.•Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP.•High densities, 1.8×1024m−3, of solute clusters were detected in as-milled flakes of 14YWT.•Lower densities, 1.2×1024m−3, were detected in the stir zone of a FSW.•Vacancies stabilize the clusters, which retard diffusion and confers excellent stability.
A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8×1024m−3 and 1.2×1024m−3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.</description><subject>atom probe tomography</subject><subject>Atomic properties</subject><subject>Clusters</subject><subject>Density</subject><subject>Electrodes</subject><subject>Ferrite</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>MATERIALS SCIENCE</subject><subject>Nanostructure</subject><subject>nanostructured ferritic alloys</subject><subject>Radiation tolerance</subject><subject>single atom detector</subject><subject>solute clusters</subject><subject>Steels</subject><subject>Titanium</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkcFKJDEQhsOisKPuIyw0e_IyYyXpdDInEXVVEATRc0gnFTZDT6JJWvDtzex411Og-Ornq_yE_KawokCHs81qE2e7NXXFgPYrytpY_iALqiRf9orBAVkAMLbklIqf5KiUDQCINYgFebzCiraGFDsTXfc6m1iDD9b8HyXflTTNFTs7zaViLl1oYBdNTKXm2dY5o-s85hxqsJ2ZpvR-Qg69mQr--nyPyfPf66fL2-X9w83d5cX90golahNTYy8942PTGhm3blhbbj0O48AHJpwAh4NX0HtFDYphhNGNDHqQXjgL_Jj82ec2laCLDe2QfzbF2O7RlHHZQhp0uodecnqdsVS9DcXiNJmIaS6aSglcsV7yb6CcKb4GpRoq9qjNqZSMXr_ksDX5XVPQu070Rn92onedNJ02lm3vfL-H7V_eAuadNkaLLuSdtUvhi4QP-lyYGg</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Miller, M.K.</creator><creator>Reinhard, D.</creator><creator>Larson, D.J.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150701</creationdate><title>Detection and quantification of solute clusters in a nanostructured ferritic alloy</title><author>Miller, M.K. ; Reinhard, D. ; Larson, D.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-488b47f23b311b23cd69c3cfe6b63625d50de6f804f81ae56b0bdb20407f5dc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>atom probe tomography</topic><topic>Atomic properties</topic><topic>Clusters</topic><topic>Density</topic><topic>Electrodes</topic><topic>Ferrite</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>MATERIALS SCIENCE</topic><topic>Nanostructure</topic><topic>nanostructured ferritic alloys</topic><topic>Radiation tolerance</topic><topic>single atom detector</topic><topic>solute clusters</topic><topic>Steels</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miller, M.K.</creatorcontrib><creatorcontrib>Reinhard, D.</creatorcontrib><creatorcontrib>Larson, D.J.</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miller, M.K.</au><au>Reinhard, D.</au><au>Larson, D.J.</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection and quantification of solute clusters in a nanostructured ferritic alloy</atitle><jtitle>Journal of nuclear materials</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>462</volume><issue>C</issue><spage>428</spage><epage>432</epage><pages>428-432</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>•Simulated APT data indicate that solute clusters can be resolved at 80% detection efficiency.•Solute clusters containing 2–9 atoms were detected in a prototype ∼80% detection efficiency LEAP.•High densities, 1.8×1024m−3, of solute clusters were detected in as-milled flakes of 14YWT.•Lower densities, 1.2×1024m−3, were detected in the stir zone of a FSW.•Vacancies stabilize the clusters, which retard diffusion and confers excellent stability.
A series of simulated atom probe datasets were examined with a friends-of-friends method to establish the detection efficiency required to resolve solute clusters in the ferrite phase of a 14YWT nanostructured ferritic alloy. The size and number densities of solute clusters in the ferrite of the as-milled mechanically-alloyed condition and the stir zone of a friction stir weld were estimated with a prototype high-detection-efficiency (∼80%) local electrode atom probe. High number densities, 1.8×1024m−3 and 1.2×1024m−3, respectively of solute clusters containing between 2 and 9 solute atoms of Ti, Y and O and were detected for these two conditions. These results support first principle calculations that predicted that vacancies stabilize these Ti–Y–O– clusters, which retard diffusion and contribute to the excellent high temperature stability of the microstructure and radiation tolerance of nanostructured ferritic alloys.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2014.12.107</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2015-07, Vol.462 (C), p.428-432 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_osti_scitechconnect_1237625 |
source | Access via ScienceDirect (Elsevier) |
subjects | atom probe tomography Atomic properties Clusters Density Electrodes Ferrite INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY MATERIALS SCIENCE Nanostructure nanostructured ferritic alloys Radiation tolerance single atom detector solute clusters Steels Titanium |
title | Detection and quantification of solute clusters in a nanostructured ferritic alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T20%3A26%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20and%20quantification%20of%20solute%20clusters%20in%20a%20nanostructured%20ferritic%20alloy&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Miller,%20M.K.&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-07-01&rft.volume=462&rft.issue=C&rft.spage=428&rft.epage=432&rft.pages=428-432&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2014.12.107&rft_dat=%3Cproquest_osti_%3E1770382473%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1732839088&rft_id=info:pmid/&rft_els_id=S0022311514010617&rfr_iscdi=true |