Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry
Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample...
Gespeichert in:
Veröffentlicht in: | Journal of Geophysical Research 2015-07, Vol.120 (7), p.4898-4916 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4916 |
---|---|
container_issue | 7 |
container_start_page | 4898 |
container_title | Journal of Geophysical Research |
container_volume | 120 |
creator | Remillieux, Marcel C. Ulrich, T. J. Payan, Cédric Rivière, Jacques Lake, Colton R. Le Bas, Pierre-Yves |
description | Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3‐D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.
Key Points
A RUS technique is developed for arbitrary geometry and high damping
The new RUS technique is used to estimate the elastic properties of rock samples |
doi_str_mv | 10.1002/2015JB011932 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1236644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3777226521</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5287-2190c8523a14a3b4f248af1a3f717daad17c69e786cddbf1e8bb3c7dc2b2cad83</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEElXbHQ9gwQYkAr52YifLtoIpZQCpBSGxsW4cZ-KSiYPttMzb41HQCLGoNz66-s7R_cmyZ0DfAKXsLaNQXp1TgJqzR9kRA1HnNS_F44MG_jQ7DeGWplelEhRHWXNtghtxjGQeosfg5rElYTI6ehe0m3akc55sMRpvcQjk3sae9HbTkxa3kx03BPeGpAcTiOsI-samIL8jG-O2JvrdSfakS1Zz-vc_zr69f_f14jJff1l9uDhb51iySuYMaqqrknGEAnlTdKyosAPknQTZIrYgtaiNrIRu26YDUzUN17LVrGEa24ofZ8-XXBeiVUHbaHSv3TimYRQwLkRRJOjVAvU4qMnbbepUObTq8myt9rW0QCFA1neQ2JcLO3n3azYhqq0N2gwDjsbNQYHklMpSwD72xX_orZv9mMZVaayiLoFV7EFKUl7VIEqeqNcLpdMJgjfdoU-gan9q9e-pE84X_N4OZvcgq65W1-dlkjK58sVlQzS_Dy70P5WQXJbq--eV-iHXNx9vPq1Uzf8AtxO3_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703891653</pqid></control><display><type>article</type><title>Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><creator>Remillieux, Marcel C. ; Ulrich, T. J. ; Payan, Cédric ; Rivière, Jacques ; Lake, Colton R. ; Le Bas, Pierre-Yves</creator><creatorcontrib>Remillieux, Marcel C. ; Ulrich, T. J. ; Payan, Cédric ; Rivière, Jacques ; Lake, Colton R. ; Le Bas, Pierre-Yves ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3‐D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.
Key Points
A RUS technique is developed for arbitrary geometry and high damping
The new RUS technique is used to estimate the elastic properties of rock samples</description><identifier>ISSN: 2169-9313</identifier><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2169-9356</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1002/2015JB011932</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Algorithms ; Analytical methods ; Anisotropy ; arbitrary shapes ; attenuating media ; Boundary conditions ; Computer simulation ; Constants ; Damping ; Elastic anisotropy ; Elastic constants ; Elastic properties ; ENGINEERING ; Engineering Sciences ; Experimental data ; finite element method ; Fittings ; Free boundaries ; Frequency spectra ; Frequency spectrum ; genetic algorithm ; Geometry ; Geophysics ; GEOSCIENCES ; high damping ; Inversions ; Lasers ; MATERIALS SCIENCE ; Mathematical analysis ; Mathematical models ; Mechanics ; Modes ; Piezoelectricity ; Properties ; Resonance ; Resonant Ultrasound Spectroscopy ; Rock properties ; Rocks ; Sandstone ; Searching ; Sediment samples ; Sedimentary rocks ; Solution space ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis ; Symmetry ; Tensors ; Ultrasonic imaging ; Ultrasound ; Visualization</subject><ispartof>Journal of Geophysical Research, 2015-07, Vol.120 (7), p.4898-4916</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5287-2190c8523a14a3b4f248af1a3f717daad17c69e786cddbf1e8bb3c7dc2b2cad83</citedby><cites>FETCH-LOGICAL-a5287-2190c8523a14a3b4f248af1a3f717daad17c69e786cddbf1e8bb3c7dc2b2cad83</cites><orcidid>0000-0003-1055-2063 ; 0000-0002-5736-0766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JB011932$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JB011932$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01166179$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1236644$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Remillieux, Marcel C.</creatorcontrib><creatorcontrib>Ulrich, T. J.</creatorcontrib><creatorcontrib>Payan, Cédric</creatorcontrib><creatorcontrib>Rivière, Jacques</creatorcontrib><creatorcontrib>Lake, Colton R.</creatorcontrib><creatorcontrib>Le Bas, Pierre-Yves</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res. Solid Earth</addtitle><description>Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3‐D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.
Key Points
A RUS technique is developed for arbitrary geometry and high damping
The new RUS technique is used to estimate the elastic properties of rock samples</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analytical methods</subject><subject>Anisotropy</subject><subject>arbitrary shapes</subject><subject>attenuating media</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Constants</subject><subject>Damping</subject><subject>Elastic anisotropy</subject><subject>Elastic constants</subject><subject>Elastic properties</subject><subject>ENGINEERING</subject><subject>Engineering Sciences</subject><subject>Experimental data</subject><subject>finite element method</subject><subject>Fittings</subject><subject>Free boundaries</subject><subject>Frequency spectra</subject><subject>Frequency spectrum</subject><subject>genetic algorithm</subject><subject>Geometry</subject><subject>Geophysics</subject><subject>GEOSCIENCES</subject><subject>high damping</subject><subject>Inversions</subject><subject>Lasers</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Modes</subject><subject>Piezoelectricity</subject><subject>Properties</subject><subject>Resonance</subject><subject>Resonant Ultrasound Spectroscopy</subject><subject>Rock properties</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Searching</subject><subject>Sediment samples</subject><subject>Sedimentary rocks</subject><subject>Solution space</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Symmetry</subject><subject>Tensors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>Visualization</subject><issn>2169-9313</issn><issn>0148-0227</issn><issn>2169-9356</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEElXbHQ9gwQYkAr52YifLtoIpZQCpBSGxsW4cZ-KSiYPttMzb41HQCLGoNz66-s7R_cmyZ0DfAKXsLaNQXp1TgJqzR9kRA1HnNS_F44MG_jQ7DeGWplelEhRHWXNtghtxjGQeosfg5rElYTI6ehe0m3akc55sMRpvcQjk3sae9HbTkxa3kx03BPeGpAcTiOsI-samIL8jG-O2JvrdSfakS1Zz-vc_zr69f_f14jJff1l9uDhb51iySuYMaqqrknGEAnlTdKyosAPknQTZIrYgtaiNrIRu26YDUzUN17LVrGEa24ofZ8-XXBeiVUHbaHSv3TimYRQwLkRRJOjVAvU4qMnbbepUObTq8myt9rW0QCFA1neQ2JcLO3n3azYhqq0N2gwDjsbNQYHklMpSwD72xX_orZv9mMZVaayiLoFV7EFKUl7VIEqeqNcLpdMJgjfdoU-gan9q9e-pE84X_N4OZvcgq65W1-dlkjK58sVlQzS_Dy70P5WQXJbq--eV-iHXNx9vPq1Uzf8AtxO3_A</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Remillieux, Marcel C.</creator><creator>Ulrich, T. J.</creator><creator>Payan, Cédric</creator><creator>Rivière, Jacques</creator><creator>Lake, Colton R.</creator><creator>Le Bas, Pierre-Yves</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1055-2063</orcidid><orcidid>https://orcid.org/0000-0002-5736-0766</orcidid></search><sort><creationdate>201507</creationdate><title>Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry</title><author>Remillieux, Marcel C. ; Ulrich, T. J. ; Payan, Cédric ; Rivière, Jacques ; Lake, Colton R. ; Le Bas, Pierre-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5287-2190c8523a14a3b4f248af1a3f717daad17c69e786cddbf1e8bb3c7dc2b2cad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analytical methods</topic><topic>Anisotropy</topic><topic>arbitrary shapes</topic><topic>attenuating media</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Constants</topic><topic>Damping</topic><topic>Elastic anisotropy</topic><topic>Elastic constants</topic><topic>Elastic properties</topic><topic>ENGINEERING</topic><topic>Engineering Sciences</topic><topic>Experimental data</topic><topic>finite element method</topic><topic>Fittings</topic><topic>Free boundaries</topic><topic>Frequency spectra</topic><topic>Frequency spectrum</topic><topic>genetic algorithm</topic><topic>Geometry</topic><topic>Geophysics</topic><topic>GEOSCIENCES</topic><topic>high damping</topic><topic>Inversions</topic><topic>Lasers</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Modes</topic><topic>Piezoelectricity</topic><topic>Properties</topic><topic>Resonance</topic><topic>Resonant Ultrasound Spectroscopy</topic><topic>Rock properties</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Searching</topic><topic>Sediment samples</topic><topic>Sedimentary rocks</topic><topic>Solution space</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Symmetry</topic><topic>Tensors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remillieux, Marcel C.</creatorcontrib><creatorcontrib>Ulrich, T. J.</creatorcontrib><creatorcontrib>Payan, Cédric</creatorcontrib><creatorcontrib>Rivière, Jacques</creatorcontrib><creatorcontrib>Lake, Colton R.</creatorcontrib><creatorcontrib>Le Bas, Pierre-Yves</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remillieux, Marcel C.</au><au>Ulrich, T. J.</au><au>Payan, Cédric</au><au>Rivière, Jacques</au><au>Lake, Colton R.</au><au>Le Bas, Pierre-Yves</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res. Solid Earth</addtitle><date>2015-07</date><risdate>2015</risdate><volume>120</volume><issue>7</issue><spage>4898</spage><epage>4916</epage><pages>4898-4916</pages><issn>2169-9313</issn><issn>0148-0227</issn><eissn>2169-9356</eissn><eissn>2156-2202</eissn><abstract>Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3‐D laser vibrometer allowing the visualization of most of the modes in the frequency band studied.
Key Points
A RUS technique is developed for arbitrary geometry and high damping
The new RUS technique is used to estimate the elastic properties of rock samples</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JB011932</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1055-2063</orcidid><orcidid>https://orcid.org/0000-0002-5736-0766</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9313 |
ispartof | Journal of Geophysical Research, 2015-07, Vol.120 (7), p.4898-4916 |
issn | 2169-9313 0148-0227 2169-9356 2156-2202 |
language | eng |
recordid | cdi_osti_scitechconnect_1236644 |
source | Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Wiley Online Library AGU Free Content |
subjects | Accuracy Algorithms Analytical methods Anisotropy arbitrary shapes attenuating media Boundary conditions Computer simulation Constants Damping Elastic anisotropy Elastic constants Elastic properties ENGINEERING Engineering Sciences Experimental data finite element method Fittings Free boundaries Frequency spectra Frequency spectrum genetic algorithm Geometry Geophysics GEOSCIENCES high damping Inversions Lasers MATERIALS SCIENCE Mathematical analysis Mathematical models Mechanics Modes Piezoelectricity Properties Resonance Resonant Ultrasound Spectroscopy Rock properties Rocks Sandstone Searching Sediment samples Sedimentary rocks Solution space Spectroscopic analysis Spectroscopy Spectrum analysis Symmetry Tensors Ultrasonic imaging Ultrasound Visualization |
title | Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20ultrasound%20spectroscopy%20for%20materials%20with%20high%20damping%20and%20samples%20of%20arbitrary%20geometry&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Remillieux,%20Marcel%20C.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2015-07&rft.volume=120&rft.issue=7&rft.spage=4898&rft.epage=4916&rft.pages=4898-4916&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2015JB011932&rft_dat=%3Cproquest_osti_%3E3777226521%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703891653&rft_id=info:pmid/&rfr_iscdi=true |