Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry

Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2015-07, Vol.120 (7), p.4898-4916
Hauptverfasser: Remillieux, Marcel C., Ulrich, T. J., Payan, Cédric, Rivière, Jacques, Lake, Colton R., Le Bas, Pierre-Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4916
container_issue 7
container_start_page 4898
container_title Journal of Geophysical Research
container_volume 120
creator Remillieux, Marcel C.
Ulrich, T. J.
Payan, Cédric
Rivière, Jacques
Lake, Colton R.
Le Bas, Pierre-Yves
description Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3‐D laser vibrometer allowing the visualization of most of the modes in the frequency band studied. Key Points A RUS technique is developed for arbitrary geometry and high damping The new RUS technique is used to estimate the elastic properties of rock samples
doi_str_mv 10.1002/2015JB011932
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1236644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3777226521</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5287-2190c8523a14a3b4f248af1a3f717daad17c69e786cddbf1e8bb3c7dc2b2cad83</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEElXbHQ9gwQYkAr52YifLtoIpZQCpBSGxsW4cZ-KSiYPttMzb41HQCLGoNz66-s7R_cmyZ0DfAKXsLaNQXp1TgJqzR9kRA1HnNS_F44MG_jQ7DeGWplelEhRHWXNtghtxjGQeosfg5rElYTI6ehe0m3akc55sMRpvcQjk3sae9HbTkxa3kx03BPeGpAcTiOsI-samIL8jG-O2JvrdSfakS1Zz-vc_zr69f_f14jJff1l9uDhb51iySuYMaqqrknGEAnlTdKyosAPknQTZIrYgtaiNrIRu26YDUzUN17LVrGEa24ofZ8-XXBeiVUHbaHSv3TimYRQwLkRRJOjVAvU4qMnbbepUObTq8myt9rW0QCFA1neQ2JcLO3n3azYhqq0N2gwDjsbNQYHklMpSwD72xX_orZv9mMZVaayiLoFV7EFKUl7VIEqeqNcLpdMJgjfdoU-gan9q9e-pE84X_N4OZvcgq65W1-dlkjK58sVlQzS_Dy70P5WQXJbq--eV-iHXNx9vPq1Uzf8AtxO3_A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703891653</pqid></control><display><type>article</type><title>Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><creator>Remillieux, Marcel C. ; Ulrich, T. J. ; Payan, Cédric ; Rivière, Jacques ; Lake, Colton R. ; Le Bas, Pierre-Yves</creator><creatorcontrib>Remillieux, Marcel C. ; Ulrich, T. J. ; Payan, Cédric ; Rivière, Jacques ; Lake, Colton R. ; Le Bas, Pierre-Yves ; Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3‐D laser vibrometer allowing the visualization of most of the modes in the frequency band studied. Key Points A RUS technique is developed for arbitrary geometry and high damping The new RUS technique is used to estimate the elastic properties of rock samples</description><identifier>ISSN: 2169-9313</identifier><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2169-9356</identifier><identifier>EISSN: 2156-2202</identifier><identifier>DOI: 10.1002/2015JB011932</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Accuracy ; Algorithms ; Analytical methods ; Anisotropy ; arbitrary shapes ; attenuating media ; Boundary conditions ; Computer simulation ; Constants ; Damping ; Elastic anisotropy ; Elastic constants ; Elastic properties ; ENGINEERING ; Engineering Sciences ; Experimental data ; finite element method ; Fittings ; Free boundaries ; Frequency spectra ; Frequency spectrum ; genetic algorithm ; Geometry ; Geophysics ; GEOSCIENCES ; high damping ; Inversions ; Lasers ; MATERIALS SCIENCE ; Mathematical analysis ; Mathematical models ; Mechanics ; Modes ; Piezoelectricity ; Properties ; Resonance ; Resonant Ultrasound Spectroscopy ; Rock properties ; Rocks ; Sandstone ; Searching ; Sediment samples ; Sedimentary rocks ; Solution space ; Spectroscopic analysis ; Spectroscopy ; Spectrum analysis ; Symmetry ; Tensors ; Ultrasonic imaging ; Ultrasound ; Visualization</subject><ispartof>Journal of Geophysical Research, 2015-07, Vol.120 (7), p.4898-4916</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5287-2190c8523a14a3b4f248af1a3f717daad17c69e786cddbf1e8bb3c7dc2b2cad83</citedby><cites>FETCH-LOGICAL-a5287-2190c8523a14a3b4f248af1a3f717daad17c69e786cddbf1e8bb3c7dc2b2cad83</cites><orcidid>0000-0003-1055-2063 ; 0000-0002-5736-0766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015JB011932$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015JB011932$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01166179$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1236644$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Remillieux, Marcel C.</creatorcontrib><creatorcontrib>Ulrich, T. J.</creatorcontrib><creatorcontrib>Payan, Cédric</creatorcontrib><creatorcontrib>Rivière, Jacques</creatorcontrib><creatorcontrib>Lake, Colton R.</creatorcontrib><creatorcontrib>Le Bas, Pierre-Yves</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry</title><title>Journal of Geophysical Research</title><addtitle>J. Geophys. Res. Solid Earth</addtitle><description>Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3‐D laser vibrometer allowing the visualization of most of the modes in the frequency band studied. Key Points A RUS technique is developed for arbitrary geometry and high damping The new RUS technique is used to estimate the elastic properties of rock samples</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analytical methods</subject><subject>Anisotropy</subject><subject>arbitrary shapes</subject><subject>attenuating media</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Constants</subject><subject>Damping</subject><subject>Elastic anisotropy</subject><subject>Elastic constants</subject><subject>Elastic properties</subject><subject>ENGINEERING</subject><subject>Engineering Sciences</subject><subject>Experimental data</subject><subject>finite element method</subject><subject>Fittings</subject><subject>Free boundaries</subject><subject>Frequency spectra</subject><subject>Frequency spectrum</subject><subject>genetic algorithm</subject><subject>Geometry</subject><subject>Geophysics</subject><subject>GEOSCIENCES</subject><subject>high damping</subject><subject>Inversions</subject><subject>Lasers</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Modes</subject><subject>Piezoelectricity</subject><subject>Properties</subject><subject>Resonance</subject><subject>Resonant Ultrasound Spectroscopy</subject><subject>Rock properties</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Searching</subject><subject>Sediment samples</subject><subject>Sedimentary rocks</subject><subject>Solution space</subject><subject>Spectroscopic analysis</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Symmetry</subject><subject>Tensors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><subject>Visualization</subject><issn>2169-9313</issn><issn>0148-0227</issn><issn>2169-9356</issn><issn>2156-2202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kc1u1DAUhSMEElXbHQ9gwQYkAr52YifLtoIpZQCpBSGxsW4cZ-KSiYPttMzb41HQCLGoNz66-s7R_cmyZ0DfAKXsLaNQXp1TgJqzR9kRA1HnNS_F44MG_jQ7DeGWplelEhRHWXNtghtxjGQeosfg5rElYTI6ehe0m3akc55sMRpvcQjk3sae9HbTkxa3kx03BPeGpAcTiOsI-samIL8jG-O2JvrdSfakS1Zz-vc_zr69f_f14jJff1l9uDhb51iySuYMaqqrknGEAnlTdKyosAPknQTZIrYgtaiNrIRu26YDUzUN17LVrGEa24ofZ8-XXBeiVUHbaHSv3TimYRQwLkRRJOjVAvU4qMnbbepUObTq8myt9rW0QCFA1neQ2JcLO3n3azYhqq0N2gwDjsbNQYHklMpSwD72xX_orZv9mMZVaayiLoFV7EFKUl7VIEqeqNcLpdMJgjfdoU-gan9q9e-pE84X_N4OZvcgq65W1-dlkjK58sVlQzS_Dy70P5WQXJbq--eV-iHXNx9vPq1Uzf8AtxO3_A</recordid><startdate>201507</startdate><enddate>201507</enddate><creator>Remillieux, Marcel C.</creator><creator>Ulrich, T. J.</creator><creator>Payan, Cédric</creator><creator>Rivière, Jacques</creator><creator>Lake, Colton R.</creator><creator>Le Bas, Pierre-Yves</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>SOI</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1055-2063</orcidid><orcidid>https://orcid.org/0000-0002-5736-0766</orcidid></search><sort><creationdate>201507</creationdate><title>Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry</title><author>Remillieux, Marcel C. ; Ulrich, T. J. ; Payan, Cédric ; Rivière, Jacques ; Lake, Colton R. ; Le Bas, Pierre-Yves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5287-2190c8523a14a3b4f248af1a3f717daad17c69e786cddbf1e8bb3c7dc2b2cad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analytical methods</topic><topic>Anisotropy</topic><topic>arbitrary shapes</topic><topic>attenuating media</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Constants</topic><topic>Damping</topic><topic>Elastic anisotropy</topic><topic>Elastic constants</topic><topic>Elastic properties</topic><topic>ENGINEERING</topic><topic>Engineering Sciences</topic><topic>Experimental data</topic><topic>finite element method</topic><topic>Fittings</topic><topic>Free boundaries</topic><topic>Frequency spectra</topic><topic>Frequency spectrum</topic><topic>genetic algorithm</topic><topic>Geometry</topic><topic>Geophysics</topic><topic>GEOSCIENCES</topic><topic>high damping</topic><topic>Inversions</topic><topic>Lasers</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Modes</topic><topic>Piezoelectricity</topic><topic>Properties</topic><topic>Resonance</topic><topic>Resonant Ultrasound Spectroscopy</topic><topic>Rock properties</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Searching</topic><topic>Sediment samples</topic><topic>Sedimentary rocks</topic><topic>Solution space</topic><topic>Spectroscopic analysis</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Symmetry</topic><topic>Tensors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remillieux, Marcel C.</creatorcontrib><creatorcontrib>Ulrich, T. J.</creatorcontrib><creatorcontrib>Payan, Cédric</creatorcontrib><creatorcontrib>Rivière, Jacques</creatorcontrib><creatorcontrib>Lake, Colton R.</creatorcontrib><creatorcontrib>Le Bas, Pierre-Yves</creatorcontrib><creatorcontrib>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of Geophysical Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remillieux, Marcel C.</au><au>Ulrich, T. J.</au><au>Payan, Cédric</au><au>Rivière, Jacques</au><au>Lake, Colton R.</au><au>Le Bas, Pierre-Yves</au><aucorp>Los Alamos National Lab. (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry</atitle><jtitle>Journal of Geophysical Research</jtitle><addtitle>J. Geophys. Res. Solid Earth</addtitle><date>2015-07</date><risdate>2015</risdate><volume>120</volume><issue>7</issue><spage>4898</spage><epage>4916</epage><pages>4898-4916</pages><issn>2169-9313</issn><issn>0148-0227</issn><eissn>2169-9356</eissn><eissn>2156-2202</eissn><abstract>Resonant ultrasound spectroscopy (RUS) is a powerful and established technique for measuring elastic constants of a material with general anisotropy. The first step of this technique consists of extracting resonance frequencies and damping from the vibrational frequency spectrum measured on a sample with free boundary conditions. An inversion technique is then used to retrieve the elastic tensor from the measured resonance frequencies. As originally developed, RUS has been mostly applicable to (i) materials with small damping such that the resonances of the sample are well separated and (ii) samples with simple geometries for which analytical solutions exist. In this paper, these limitations are addressed with a new RUS approach adapted to materials with high damping and samples of arbitrary geometry. Resonances are extracted by fitting a sum of exponentially damped sinusoids to the measured frequency spectrum. The inversion of the elastic tensor is achieved with a genetic algorithm, which allows searching for a global minimum within a discrete and relatively wide solution space. First, the accuracy of the proposed approach is evaluated against numerical data simulated for samples with isotropic symmetry and transversely isotropic symmetry. Subsequently, the applicability of the approach is demonstrated using experimental data collected on a composite structure consisting of a cylindrical sample of Berea sandstone glued to a large piezoelectric disk. In the proposed experiments, RUS is further enhanced by the use of a 3‐D laser vibrometer allowing the visualization of most of the modes in the frequency band studied. Key Points A RUS technique is developed for arbitrary geometry and high damping The new RUS technique is used to estimate the elastic properties of rock samples</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015JB011932</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1055-2063</orcidid><orcidid>https://orcid.org/0000-0002-5736-0766</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9313
ispartof Journal of Geophysical Research, 2015-07, Vol.120 (7), p.4898-4916
issn 2169-9313
0148-0227
2169-9356
2156-2202
language eng
recordid cdi_osti_scitechconnect_1236644
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Wiley Online Library AGU Free Content
subjects Accuracy
Algorithms
Analytical methods
Anisotropy
arbitrary shapes
attenuating media
Boundary conditions
Computer simulation
Constants
Damping
Elastic anisotropy
Elastic constants
Elastic properties
ENGINEERING
Engineering Sciences
Experimental data
finite element method
Fittings
Free boundaries
Frequency spectra
Frequency spectrum
genetic algorithm
Geometry
Geophysics
GEOSCIENCES
high damping
Inversions
Lasers
MATERIALS SCIENCE
Mathematical analysis
Mathematical models
Mechanics
Modes
Piezoelectricity
Properties
Resonance
Resonant Ultrasound Spectroscopy
Rock properties
Rocks
Sandstone
Searching
Sediment samples
Sedimentary rocks
Solution space
Spectroscopic analysis
Spectroscopy
Spectrum analysis
Symmetry
Tensors
Ultrasonic imaging
Ultrasound
Visualization
title Resonant ultrasound spectroscopy for materials with high damping and samples of arbitrary geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T08%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resonant%20ultrasound%20spectroscopy%20for%20materials%20with%20high%20damping%20and%20samples%20of%20arbitrary%20geometry&rft.jtitle=Journal%20of%20Geophysical%20Research&rft.au=Remillieux,%20Marcel%20C.&rft.aucorp=Los%20Alamos%20National%20Lab.%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2015-07&rft.volume=120&rft.issue=7&rft.spage=4898&rft.epage=4916&rft.pages=4898-4916&rft.issn=2169-9313&rft.eissn=2169-9356&rft_id=info:doi/10.1002/2015JB011932&rft_dat=%3Cproquest_osti_%3E3777226521%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703891653&rft_id=info:pmid/&rfr_iscdi=true