Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels

•Banded X65 pipeline steel was tested under fatigue in high pressure hydrogen gas.•Fatigue crack growth rates were accelerated in hydrogen as compared to tests in air.•Orientation-dependent fatigue crack growth rates observed in air and hydrogen gas.•Cracks grown perpendicular to banded microstructu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2016-01, Vol.82 (Part 3), p.497-504
Hauptverfasser: Ronevich, Joseph A., Somerday, Brian P., San Marchi, Chris W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 504
container_issue Part 3
container_start_page 497
container_title International journal of fatigue
container_volume 82
creator Ronevich, Joseph A.
Somerday, Brian P.
San Marchi, Chris W.
description •Banded X65 pipeline steel was tested under fatigue in high pressure hydrogen gas.•Fatigue crack growth rates were accelerated in hydrogen as compared to tests in air.•Orientation-dependent fatigue crack growth rates observed in air and hydrogen gas.•Cracks grown perpendicular to banded microstructure exhibited slower growth rates. Banded ferrite–pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite–pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. The reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impeded hydrogen diffusion across the banded pearlite.
doi_str_mv 10.1016/j.ijfatigue.2015.09.004
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1236479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014211231500287X</els_id><sourcerecordid>1825480778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-a2430809a2f112015d161f4738c59fb64b4b7208a0509e9bf547aa16d8abd7ff3</originalsourceid><addsrcrecordid>eNqFkE1v1DAQhi0EUpfS31CLE5eEcWLH8bGqyodUiQtI3CzHGe96ydqL7YD67-toK66c5vLMzPu8hNwyaBmw4eOx9Udnit-v2HbARAuqBeCvyI6NUjU9F91rsgPGu4axrr8ib3M-AoACKXZkenAObck0OnryNsVc0mrLmpBOJsw-7GkM9PA0p7jHQE3OPhec6ctHapOxv-g-xb_lQH2gPwdBz_6Miw9IK4lLfkfeOLNkvHmZ1-THp4fv91-ax2-fv97fPTZWDFAa0_EeRlCmczVnFZnZwByX_WiFctPAJz7JDkYDAhSqyQkujWHDPJppls711-T95W518DpbX9AebAyh-ulqPnCpKvThAp1T_L1iLvrks8VlMQHjmjUbO8FHkHKsqLygWys5odPn5E8mPWkGeqteH_W_6vWWWIPStfq6eXfZrPb4x2Pa0mCwOPu0hZmj_--NZxW0kXM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1825480778</pqid></control><display><type>article</type><title>Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ronevich, Joseph A. ; Somerday, Brian P. ; San Marchi, Chris W.</creator><creatorcontrib>Ronevich, Joseph A. ; Somerday, Brian P. ; San Marchi, Chris W. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>•Banded X65 pipeline steel was tested under fatigue in high pressure hydrogen gas.•Fatigue crack growth rates were accelerated in hydrogen as compared to tests in air.•Orientation-dependent fatigue crack growth rates observed in air and hydrogen gas.•Cracks grown perpendicular to banded microstructure exhibited slower growth rates. Banded ferrite–pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite–pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. The reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impeded hydrogen diffusion across the banded pearlite.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2015.09.004</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Carbon steel ; Crack propagation ; Fatigue crack growth ; Fatigue cracks ; Fatigue failure ; Fracture mechanics ; High strength low alloy steels ; Hydrogen ; MATERIALS SCIENCE ; Pearlite ; Steels</subject><ispartof>International journal of fatigue, 2016-01, Vol.82 (Part 3), p.497-504</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-a2430809a2f112015d161f4738c59fb64b4b7208a0509e9bf547aa16d8abd7ff3</citedby><cites>FETCH-LOGICAL-c560t-a2430809a2f112015d161f4738c59fb64b4b7208a0509e9bf547aa16d8abd7ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2015.09.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1236479$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ronevich, Joseph A.</creatorcontrib><creatorcontrib>Somerday, Brian P.</creatorcontrib><creatorcontrib>San Marchi, Chris W.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels</title><title>International journal of fatigue</title><description>•Banded X65 pipeline steel was tested under fatigue in high pressure hydrogen gas.•Fatigue crack growth rates were accelerated in hydrogen as compared to tests in air.•Orientation-dependent fatigue crack growth rates observed in air and hydrogen gas.•Cracks grown perpendicular to banded microstructure exhibited slower growth rates. Banded ferrite–pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite–pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. The reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impeded hydrogen diffusion across the banded pearlite.</description><subject>Carbon steel</subject><subject>Crack propagation</subject><subject>Fatigue crack growth</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fracture mechanics</subject><subject>High strength low alloy steels</subject><subject>Hydrogen</subject><subject>MATERIALS SCIENCE</subject><subject>Pearlite</subject><subject>Steels</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1v1DAQhi0EUpfS31CLE5eEcWLH8bGqyodUiQtI3CzHGe96ydqL7YD67-toK66c5vLMzPu8hNwyaBmw4eOx9Udnit-v2HbARAuqBeCvyI6NUjU9F91rsgPGu4axrr8ib3M-AoACKXZkenAObck0OnryNsVc0mrLmpBOJsw-7GkM9PA0p7jHQE3OPhec6ctHapOxv-g-xb_lQH2gPwdBz_6Miw9IK4lLfkfeOLNkvHmZ1-THp4fv91-ax2-fv97fPTZWDFAa0_EeRlCmczVnFZnZwByX_WiFctPAJz7JDkYDAhSqyQkujWHDPJppls711-T95W518DpbX9AebAyh-ulqPnCpKvThAp1T_L1iLvrks8VlMQHjmjUbO8FHkHKsqLygWys5odPn5E8mPWkGeqteH_W_6vWWWIPStfq6eXfZrPb4x2Pa0mCwOPu0hZmj_--NZxW0kXM</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Ronevich, Joseph A.</creator><creator>Somerday, Brian P.</creator><creator>San Marchi, Chris W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160101</creationdate><title>Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels</title><author>Ronevich, Joseph A. ; Somerday, Brian P. ; San Marchi, Chris W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-a2430809a2f112015d161f4738c59fb64b4b7208a0509e9bf547aa16d8abd7ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon steel</topic><topic>Crack propagation</topic><topic>Fatigue crack growth</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fracture mechanics</topic><topic>High strength low alloy steels</topic><topic>Hydrogen</topic><topic>MATERIALS SCIENCE</topic><topic>Pearlite</topic><topic>Steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ronevich, Joseph A.</creatorcontrib><creatorcontrib>Somerday, Brian P.</creatorcontrib><creatorcontrib>San Marchi, Chris W.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ronevich, Joseph A.</au><au>Somerday, Brian P.</au><au>San Marchi, Chris W.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels</atitle><jtitle>International journal of fatigue</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>82</volume><issue>Part 3</issue><spage>497</spage><epage>504</epage><pages>497-504</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•Banded X65 pipeline steel was tested under fatigue in high pressure hydrogen gas.•Fatigue crack growth rates were accelerated in hydrogen as compared to tests in air.•Orientation-dependent fatigue crack growth rates observed in air and hydrogen gas.•Cracks grown perpendicular to banded microstructure exhibited slower growth rates. Banded ferrite–pearlite X65 pipeline steel was tested in high pressure hydrogen gas to evaluate the effects of oriented pearlite on hydrogen assisted fatigue crack growth. Test specimens were oriented in the steel pipe such that cracks propagated either parallel or perpendicular to the banded pearlite. The ferrite–pearlite microstructure exhibited orientation dependent behavior in which fatigue crack growth rates were significantly lower for cracks oriented perpendicular to the banded pearlite compared to cracks oriented parallel to the bands. The reduction of hydrogen assisted fatigue crack growth across the banded pearlite is attributed to a combination of crack-tip branching and impeded hydrogen diffusion across the banded pearlite.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2015.09.004</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2016-01, Vol.82 (Part 3), p.497-504
issn 0142-1123
1879-3452
language eng
recordid cdi_osti_scitechconnect_1236479
source Access via ScienceDirect (Elsevier)
subjects Carbon steel
Crack propagation
Fatigue crack growth
Fatigue cracks
Fatigue failure
Fracture mechanics
High strength low alloy steels
Hydrogen
MATERIALS SCIENCE
Pearlite
Steels
title Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20microstructure%20banding%20on%20hydrogen%20assisted%20fatigue%20crack%20growth%20in%20X65%20pipeline%20steels&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Ronevich,%20Joseph%20A.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2016-01-01&rft.volume=82&rft.issue=Part%203&rft.spage=497&rft.epage=504&rft.pages=497-504&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2015.09.004&rft_dat=%3Cproquest_osti_%3E1825480778%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1825480778&rft_id=info:pmid/&rft_els_id=S014211231500287X&rfr_iscdi=true