Substrate Promotes Productive Gas Binding in the α‑Ketoglutarate-Dependent Oxygenase FIH
The Fe2+/α-ketoglutarate (αKG)-dependent oxygenases use molecular oxygen to conduct a wide variety of reactions with important biological implications, such as DNA base excision repair, histone demethylation, and the cellular hypoxia response. These enzymes follow a sequential mechanism in which O2...
Gespeichert in:
Veröffentlicht in: | Biochemistry (Easton) 2016-01, Vol.55 (2), p.277-286 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | 2 |
container_start_page | 277 |
container_title | Biochemistry (Easton) |
container_volume | 55 |
creator | Taabazuing, Cornelius Y Fermann, Justin Garman, Scott Knapp, Michael J |
description | The Fe2+/α-ketoglutarate (αKG)-dependent oxygenases use molecular oxygen to conduct a wide variety of reactions with important biological implications, such as DNA base excision repair, histone demethylation, and the cellular hypoxia response. These enzymes follow a sequential mechanism in which O2 binds and reacts after the primary substrate binds, making those structural factors that promote productive O2 binding central to their chemistry. A large challenge in this field is to identify strategies that engender productive turnover. Factor inhibiting HIF (FIH) is a Fe2+/αKG-dependent oxygenase that forms part of the O2 sensing machinery in human cells by hydroxylating the C-terminal transactivation domain (CTAD) found within the HIF-1α protein. The structure of FIH was determined with the O2 analogue NO bound to Fe, offering the first direct insight into the gas binding geometry in this enzyme. Through a combination of density functional theory calculations, {FeNO}7 electron paramagnetic resonance spectroscopy, and ultraviolet–visible absorption spectroscopy, we demonstrate that CTAD binding stimulates O2 reactivity by altering the orientation of the bound gas molecule. Although unliganded FIH binds NO with moderate affinity, the bound gas can adopt either of two orientations with similar stability; upon CTAD binding, NO adopts a single preferred orientation that is appropriate for supporting oxidative decarboxylation. Combined with other studies of related enzymes, our data suggest that substrate-induced reorientation of bound O2 is the mechanism utilized by the αKG oxygenases to tightly couple O2 activation to substrate hydroxylation. |
doi_str_mv | 10.1021/acs.biochem.5b01003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1236263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760902411</sourcerecordid><originalsourceid>FETCH-LOGICAL-a450t-2d7a973c688c20f612da18aa9294462f1af5742cc932b3648cbf89dd8b0afc5a3</originalsourceid><addsrcrecordid>eNqFkUtuFDEQhq0IlEwCJ4gUtVix6Un50W57CSEvESlIwIqF5XZXzziatoe2G5FdrpCj5CI5BCehRzOwhFVVSd9fJdVHyDGFOQVGT61L88ZHt8R-XjVAAfgemdGKQSm0rl6QGQDIkmkJB-QwpbtpFFCLfXLAZM1qpcSMfPs8NikPNmPxaYh9zJg2TTu67H9gcWlT8d6H1odF4UORl1g8P_16ePyIOS5WY7abZPkB1xhaDLm4_Xm_wGATFhfXV6_Iy86uEr7e1SPy9eL8y9lVeXN7eX327qa0ooJcsra2uuZOKuUYdJKy1lJlrWZaCMk6aruqFsw5zVnDpVCu6ZRuW9WA7Vxl-RF5s90bU_YmOZ_RLV0MAV02lHHJJJ-gt1toPcTvI6Zsep8crlY2YByToYpLyeuKqf-jtQQNTFA6oXyLuiGmNGBn1oPv7XBvKJiNJTNZMjtLZmdpSp3sDoxNj-3fzB8tE3C6BTbpuzgOYfrfP1f-BgROoWs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760902411</pqid></control><display><type>article</type><title>Substrate Promotes Productive Gas Binding in the α‑Ketoglutarate-Dependent Oxygenase FIH</title><source>MEDLINE</source><source>ACS Publications</source><creator>Taabazuing, Cornelius Y ; Fermann, Justin ; Garman, Scott ; Knapp, Michael J</creator><creatorcontrib>Taabazuing, Cornelius Y ; Fermann, Justin ; Garman, Scott ; Knapp, Michael J ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>The Fe2+/α-ketoglutarate (αKG)-dependent oxygenases use molecular oxygen to conduct a wide variety of reactions with important biological implications, such as DNA base excision repair, histone demethylation, and the cellular hypoxia response. These enzymes follow a sequential mechanism in which O2 binds and reacts after the primary substrate binds, making those structural factors that promote productive O2 binding central to their chemistry. A large challenge in this field is to identify strategies that engender productive turnover. Factor inhibiting HIF (FIH) is a Fe2+/αKG-dependent oxygenase that forms part of the O2 sensing machinery in human cells by hydroxylating the C-terminal transactivation domain (CTAD) found within the HIF-1α protein. The structure of FIH was determined with the O2 analogue NO bound to Fe, offering the first direct insight into the gas binding geometry in this enzyme. Through a combination of density functional theory calculations, {FeNO}7 electron paramagnetic resonance spectroscopy, and ultraviolet–visible absorption spectroscopy, we demonstrate that CTAD binding stimulates O2 reactivity by altering the orientation of the bound gas molecule. Although unliganded FIH binds NO with moderate affinity, the bound gas can adopt either of two orientations with similar stability; upon CTAD binding, NO adopts a single preferred orientation that is appropriate for supporting oxidative decarboxylation. Combined with other studies of related enzymes, our data suggest that substrate-induced reorientation of bound O2 is the mechanism utilized by the αKG oxygenases to tightly couple O2 activation to substrate hydroxylation.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.5b01003</identifier><identifier>PMID: 26727884</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>absorption ; BASIC BIOLOGICAL SCIENCES ; Chemical structure ; decarboxylation ; DNA ; DNA repair ; electron paramagnetic resonance spectroscopy ; Electron Spin Resonance Spectroscopy ; geometry ; histones ; Humans ; hydroxylation ; hypoxia ; hypoxia-inducible factor 1 ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; iron ; Iron - metabolism ; Ketoglutaric Acids - metabolism ; Mixed Function Oxygenases - metabolism ; nitric oxide ; Nitric Oxide - metabolism ; Organic reactions ; oxygen ; Oxygen - metabolism ; oxygenases ; Oxygenases - metabolism ; Peptides and proteins ; Protein Structure, Secondary ; Repressor Proteins - metabolism ; Substrate Specificity ; Surface interactions ; transcriptional activation</subject><ispartof>Biochemistry (Easton), 2016-01, Vol.55 (2), p.277-286</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a450t-2d7a973c688c20f612da18aa9294462f1af5742cc932b3648cbf89dd8b0afc5a3</citedby><cites>FETCH-LOGICAL-a450t-2d7a973c688c20f612da18aa9294462f1af5742cc932b3648cbf89dd8b0afc5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.biochem.5b01003$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.biochem.5b01003$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,778,782,883,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26727884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1236263$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Taabazuing, Cornelius Y</creatorcontrib><creatorcontrib>Fermann, Justin</creatorcontrib><creatorcontrib>Garman, Scott</creatorcontrib><creatorcontrib>Knapp, Michael J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Substrate Promotes Productive Gas Binding in the α‑Ketoglutarate-Dependent Oxygenase FIH</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>The Fe2+/α-ketoglutarate (αKG)-dependent oxygenases use molecular oxygen to conduct a wide variety of reactions with important biological implications, such as DNA base excision repair, histone demethylation, and the cellular hypoxia response. These enzymes follow a sequential mechanism in which O2 binds and reacts after the primary substrate binds, making those structural factors that promote productive O2 binding central to their chemistry. A large challenge in this field is to identify strategies that engender productive turnover. Factor inhibiting HIF (FIH) is a Fe2+/αKG-dependent oxygenase that forms part of the O2 sensing machinery in human cells by hydroxylating the C-terminal transactivation domain (CTAD) found within the HIF-1α protein. The structure of FIH was determined with the O2 analogue NO bound to Fe, offering the first direct insight into the gas binding geometry in this enzyme. Through a combination of density functional theory calculations, {FeNO}7 electron paramagnetic resonance spectroscopy, and ultraviolet–visible absorption spectroscopy, we demonstrate that CTAD binding stimulates O2 reactivity by altering the orientation of the bound gas molecule. Although unliganded FIH binds NO with moderate affinity, the bound gas can adopt either of two orientations with similar stability; upon CTAD binding, NO adopts a single preferred orientation that is appropriate for supporting oxidative decarboxylation. Combined with other studies of related enzymes, our data suggest that substrate-induced reorientation of bound O2 is the mechanism utilized by the αKG oxygenases to tightly couple O2 activation to substrate hydroxylation.</description><subject>absorption</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Chemical structure</subject><subject>decarboxylation</subject><subject>DNA</subject><subject>DNA repair</subject><subject>electron paramagnetic resonance spectroscopy</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>geometry</subject><subject>histones</subject><subject>Humans</subject><subject>hydroxylation</subject><subject>hypoxia</subject><subject>hypoxia-inducible factor 1</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>iron</subject><subject>Iron - metabolism</subject><subject>Ketoglutaric Acids - metabolism</subject><subject>Mixed Function Oxygenases - metabolism</subject><subject>nitric oxide</subject><subject>Nitric Oxide - metabolism</subject><subject>Organic reactions</subject><subject>oxygen</subject><subject>Oxygen - metabolism</subject><subject>oxygenases</subject><subject>Oxygenases - metabolism</subject><subject>Peptides and proteins</subject><subject>Protein Structure, Secondary</subject><subject>Repressor Proteins - metabolism</subject><subject>Substrate Specificity</subject><subject>Surface interactions</subject><subject>transcriptional activation</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtuFDEQhq0IlEwCJ4gUtVix6Un50W57CSEvESlIwIqF5XZXzziatoe2G5FdrpCj5CI5BCehRzOwhFVVSd9fJdVHyDGFOQVGT61L88ZHt8R-XjVAAfgemdGKQSm0rl6QGQDIkmkJB-QwpbtpFFCLfXLAZM1qpcSMfPs8NikPNmPxaYh9zJg2TTu67H9gcWlT8d6H1odF4UORl1g8P_16ePyIOS5WY7abZPkB1xhaDLm4_Xm_wGATFhfXV6_Iy86uEr7e1SPy9eL8y9lVeXN7eX327qa0ooJcsra2uuZOKuUYdJKy1lJlrWZaCMk6aruqFsw5zVnDpVCu6ZRuW9WA7Vxl-RF5s90bU_YmOZ_RLV0MAV02lHHJJJ-gt1toPcTvI6Zsep8crlY2YByToYpLyeuKqf-jtQQNTFA6oXyLuiGmNGBn1oPv7XBvKJiNJTNZMjtLZmdpSp3sDoxNj-3fzB8tE3C6BTbpuzgOYfrfP1f-BgROoWs</recordid><startdate>20160119</startdate><enddate>20160119</enddate><creator>Taabazuing, Cornelius Y</creator><creator>Fermann, Justin</creator><creator>Garman, Scott</creator><creator>Knapp, Michael J</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160119</creationdate><title>Substrate Promotes Productive Gas Binding in the α‑Ketoglutarate-Dependent Oxygenase FIH</title><author>Taabazuing, Cornelius Y ; Fermann, Justin ; Garman, Scott ; Knapp, Michael J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a450t-2d7a973c688c20f612da18aa9294462f1af5742cc932b3648cbf89dd8b0afc5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>absorption</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Chemical structure</topic><topic>decarboxylation</topic><topic>DNA</topic><topic>DNA repair</topic><topic>electron paramagnetic resonance spectroscopy</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>geometry</topic><topic>histones</topic><topic>Humans</topic><topic>hydroxylation</topic><topic>hypoxia</topic><topic>hypoxia-inducible factor 1</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>iron</topic><topic>Iron - metabolism</topic><topic>Ketoglutaric Acids - metabolism</topic><topic>Mixed Function Oxygenases - metabolism</topic><topic>nitric oxide</topic><topic>Nitric Oxide - metabolism</topic><topic>Organic reactions</topic><topic>oxygen</topic><topic>Oxygen - metabolism</topic><topic>oxygenases</topic><topic>Oxygenases - metabolism</topic><topic>Peptides and proteins</topic><topic>Protein Structure, Secondary</topic><topic>Repressor Proteins - metabolism</topic><topic>Substrate Specificity</topic><topic>Surface interactions</topic><topic>transcriptional activation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taabazuing, Cornelius Y</creatorcontrib><creatorcontrib>Fermann, Justin</creatorcontrib><creatorcontrib>Garman, Scott</creatorcontrib><creatorcontrib>Knapp, Michael J</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taabazuing, Cornelius Y</au><au>Fermann, Justin</au><au>Garman, Scott</au><au>Knapp, Michael J</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substrate Promotes Productive Gas Binding in the α‑Ketoglutarate-Dependent Oxygenase FIH</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2016-01-19</date><risdate>2016</risdate><volume>55</volume><issue>2</issue><spage>277</spage><epage>286</epage><pages>277-286</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>The Fe2+/α-ketoglutarate (αKG)-dependent oxygenases use molecular oxygen to conduct a wide variety of reactions with important biological implications, such as DNA base excision repair, histone demethylation, and the cellular hypoxia response. These enzymes follow a sequential mechanism in which O2 binds and reacts after the primary substrate binds, making those structural factors that promote productive O2 binding central to their chemistry. A large challenge in this field is to identify strategies that engender productive turnover. Factor inhibiting HIF (FIH) is a Fe2+/αKG-dependent oxygenase that forms part of the O2 sensing machinery in human cells by hydroxylating the C-terminal transactivation domain (CTAD) found within the HIF-1α protein. The structure of FIH was determined with the O2 analogue NO bound to Fe, offering the first direct insight into the gas binding geometry in this enzyme. Through a combination of density functional theory calculations, {FeNO}7 electron paramagnetic resonance spectroscopy, and ultraviolet–visible absorption spectroscopy, we demonstrate that CTAD binding stimulates O2 reactivity by altering the orientation of the bound gas molecule. Although unliganded FIH binds NO with moderate affinity, the bound gas can adopt either of two orientations with similar stability; upon CTAD binding, NO adopts a single preferred orientation that is appropriate for supporting oxidative decarboxylation. Combined with other studies of related enzymes, our data suggest that substrate-induced reorientation of bound O2 is the mechanism utilized by the αKG oxygenases to tightly couple O2 activation to substrate hydroxylation.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26727884</pmid><doi>10.1021/acs.biochem.5b01003</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2016-01, Vol.55 (2), p.277-286 |
issn | 0006-2960 1520-4995 1520-4995 |
language | eng |
recordid | cdi_osti_scitechconnect_1236263 |
source | MEDLINE; ACS Publications |
subjects | absorption BASIC BIOLOGICAL SCIENCES Chemical structure decarboxylation DNA DNA repair electron paramagnetic resonance spectroscopy Electron Spin Resonance Spectroscopy geometry histones Humans hydroxylation hypoxia hypoxia-inducible factor 1 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY iron Iron - metabolism Ketoglutaric Acids - metabolism Mixed Function Oxygenases - metabolism nitric oxide Nitric Oxide - metabolism Organic reactions oxygen Oxygen - metabolism oxygenases Oxygenases - metabolism Peptides and proteins Protein Structure, Secondary Repressor Proteins - metabolism Substrate Specificity Surface interactions transcriptional activation |
title | Substrate Promotes Productive Gas Binding in the α‑Ketoglutarate-Dependent Oxygenase FIH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substrate%20Promotes%20Productive%20Gas%20Binding%20in%20the%20%CE%B1%E2%80%91Ketoglutarate-Dependent%20Oxygenase%20FIH&rft.jtitle=Biochemistry%20(Easton)&rft.au=Taabazuing,%20Cornelius%20Y&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2016-01-19&rft.volume=55&rft.issue=2&rft.spage=277&rft.epage=286&rft.pages=277-286&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.5b01003&rft_dat=%3Cproquest_osti_%3E1760902411%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760902411&rft_id=info:pmid/26727884&rfr_iscdi=true |