Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces
The origin of Rashba spin splitting in the two-dimensional electron gas at the (001) surface of SrTiO sub(3) is studied using first-principles calculations and tight-binding model. Calculations of oxygen vacancies under virtual crystal approximation reveal a two-dimensional electron-gas subband stru...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-01, Vol.93 (4) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Physical review. B |
container_volume | 93 |
creator | Shanavas, K V |
description | The origin of Rashba spin splitting in the two-dimensional electron gas at the (001) surface of SrTiO sub(3) is studied using first-principles calculations and tight-binding model. Calculations of oxygen vacancies under virtual crystal approximation reveal a two-dimensional electron-gas subband structure similar to polar materials, consistent with observations on SrTiO sub(3). Our studies also confirm that k dependence of the spin splitting is predominantly cubic in the surface Ti-t sub(2g) states, even though structural relaxations diminish the effect in d sub(xy) bands. A tight-binding model, explicitly including Ti-d and O-p states as well as next-nearest-neighbor interactions, is derived to understand the first-principles results. Effective Rashba Hamiltonians for the surface bands are derived using quasidegenerate perturbation theory and scenarios in which linear k contribution may be suppressed are discussed. However, the cubic terms in the Hamiltonian are found to be different from the model derived using k times p theory, leading to different pseudospin symmetry in the Brillouin zone. |
doi_str_mv | 10.1103/PhysRevB.93.045108 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1235844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808065017</sourcerecordid><originalsourceid>FETCH-LOGICAL-o145t-fc0764a63e1910101525ffb5a24c6c37f678b2f87487e49147a895af7de5138f3</originalsourceid><addsrcrecordid>eNo9jk1LAzEYhIMoWLR_wFPwVA9b32y-j1rUCoVKreclm75hV9ZGN1mh_97FisxhBuZhGEKuGMwZA3770hzSBr_v55bPQUgG5oRMSqFsYa2yp_9ZwjmZpvQOAEyB1WAnZLltMPaYW-86mvKwO9AYaG6Q-qFuPd241NSOYgjoM3X5t3rtt-2az8aZG5qGPjiP6ZKcBdclnP75BXl7fNgulsVq_fS8uFsVkQmZi-BBK-EUR2YZjJKlDKGWrhReea6D0qYug9HCaBSWCe2MlS7oHUrGTeAX5Pq4G1Nuq-TbjL7xcb8f_1Ws5NIIMUKzI_TZx68BU64-2uSx69we45AqZsCAksA0_wECplvH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808065017</pqid></control><display><type>article</type><title>Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces</title><source>American Physical Society Journals</source><creator>Shanavas, K V</creator><creatorcontrib>Shanavas, K V ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The origin of Rashba spin splitting in the two-dimensional electron gas at the (001) surface of SrTiO sub(3) is studied using first-principles calculations and tight-binding model. Calculations of oxygen vacancies under virtual crystal approximation reveal a two-dimensional electron-gas subband structure similar to polar materials, consistent with observations on SrTiO sub(3). Our studies also confirm that k dependence of the spin splitting is predominantly cubic in the surface Ti-t sub(2g) states, even though structural relaxations diminish the effect in d sub(xy) bands. A tight-binding model, explicitly including Ti-d and O-p states as well as next-nearest-neighbor interactions, is derived to understand the first-principles results. Effective Rashba Hamiltonians for the surface bands are derived using quasidegenerate perturbation theory and scenarios in which linear k contribution may be suppressed are discussed. However, the cubic terms in the Hamiltonian are found to be different from the model derived using k times p theory, leading to different pseudospin symmetry in the Brillouin zone.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.045108</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Condensed matter ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electron gas ; Mathematical analysis ; Mathematical models ; Splitting ; Strontium titanates ; Titanium ; Two dimensional</subject><ispartof>Physical review. B, 2016-01, Vol.93 (4)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1235844$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shanavas, K V</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces</title><title>Physical review. B</title><description>The origin of Rashba spin splitting in the two-dimensional electron gas at the (001) surface of SrTiO sub(3) is studied using first-principles calculations and tight-binding model. Calculations of oxygen vacancies under virtual crystal approximation reveal a two-dimensional electron-gas subband structure similar to polar materials, consistent with observations on SrTiO sub(3). Our studies also confirm that k dependence of the spin splitting is predominantly cubic in the surface Ti-t sub(2g) states, even though structural relaxations diminish the effect in d sub(xy) bands. A tight-binding model, explicitly including Ti-d and O-p states as well as next-nearest-neighbor interactions, is derived to understand the first-principles results. Effective Rashba Hamiltonians for the surface bands are derived using quasidegenerate perturbation theory and scenarios in which linear k contribution may be suppressed are discussed. However, the cubic terms in the Hamiltonian are found to be different from the model derived using k times p theory, leading to different pseudospin symmetry in the Brillouin zone.</description><subject>Condensed matter</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electron gas</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Splitting</subject><subject>Strontium titanates</subject><subject>Titanium</subject><subject>Two dimensional</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9jk1LAzEYhIMoWLR_wFPwVA9b32y-j1rUCoVKreclm75hV9ZGN1mh_97FisxhBuZhGEKuGMwZA3770hzSBr_v55bPQUgG5oRMSqFsYa2yp_9ZwjmZpvQOAEyB1WAnZLltMPaYW-86mvKwO9AYaG6Q-qFuPd241NSOYgjoM3X5t3rtt-2az8aZG5qGPjiP6ZKcBdclnP75BXl7fNgulsVq_fS8uFsVkQmZi-BBK-EUR2YZjJKlDKGWrhReea6D0qYug9HCaBSWCe2MlS7oHUrGTeAX5Pq4G1Nuq-TbjL7xcb8f_1Ws5NIIMUKzI_TZx68BU64-2uSx69we45AqZsCAksA0_wECplvH</recordid><startdate>20160111</startdate><enddate>20160111</enddate><creator>Shanavas, K V</creator><general>American Physical Society (APS)</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160111</creationdate><title>Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces</title><author>Shanavas, K V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o145t-fc0764a63e1910101525ffb5a24c6c37f678b2f87487e49147a895af7de5138f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed matter</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electron gas</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Splitting</topic><topic>Strontium titanates</topic><topic>Titanium</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanavas, K V</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shanavas, K V</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces</atitle><jtitle>Physical review. B</jtitle><date>2016-01-11</date><risdate>2016</risdate><volume>93</volume><issue>4</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The origin of Rashba spin splitting in the two-dimensional electron gas at the (001) surface of SrTiO sub(3) is studied using first-principles calculations and tight-binding model. Calculations of oxygen vacancies under virtual crystal approximation reveal a two-dimensional electron-gas subband structure similar to polar materials, consistent with observations on SrTiO sub(3). Our studies also confirm that k dependence of the spin splitting is predominantly cubic in the surface Ti-t sub(2g) states, even though structural relaxations diminish the effect in d sub(xy) bands. A tight-binding model, explicitly including Ti-d and O-p states as well as next-nearest-neighbor interactions, is derived to understand the first-principles results. Effective Rashba Hamiltonians for the surface bands are derived using quasidegenerate perturbation theory and scenarios in which linear k contribution may be suppressed are discussed. However, the cubic terms in the Hamiltonian are found to be different from the model derived using k times p theory, leading to different pseudospin symmetry in the Brillouin zone.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevB.93.045108</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-01, Vol.93 (4) |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1235844 |
source | American Physical Society Journals |
subjects | Condensed matter CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Electron gas Mathematical analysis Mathematical models Splitting Strontium titanates Titanium Two dimensional |
title | Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20the%20cubic%20Rashba%20effect%20at%20the%20SrTiO3(001)%20surfaces&rft.jtitle=Physical%20review.%20B&rft.au=Shanavas,%20K%20V&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2016-01-11&rft.volume=93&rft.issue=4&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.045108&rft_dat=%3Cproquest_osti_%3E1808065017%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808065017&rft_id=info:pmid/&rfr_iscdi=true |