Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces

The origin of Rashba spin splitting in the two-dimensional electron gas at the (001) surface of SrTiO sub(3) is studied using first-principles calculations and tight-binding model. Calculations of oxygen vacancies under virtual crystal approximation reveal a two-dimensional electron-gas subband stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-01, Vol.93 (4)
1. Verfasser: Shanavas, K V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Physical review. B
container_volume 93
creator Shanavas, K V
description The origin of Rashba spin splitting in the two-dimensional electron gas at the (001) surface of SrTiO sub(3) is studied using first-principles calculations and tight-binding model. Calculations of oxygen vacancies under virtual crystal approximation reveal a two-dimensional electron-gas subband structure similar to polar materials, consistent with observations on SrTiO sub(3). Our studies also confirm that k dependence of the spin splitting is predominantly cubic in the surface Ti-t sub(2g) states, even though structural relaxations diminish the effect in d sub(xy) bands. A tight-binding model, explicitly including Ti-d and O-p states as well as next-nearest-neighbor interactions, is derived to understand the first-principles results. Effective Rashba Hamiltonians for the surface bands are derived using quasidegenerate perturbation theory and scenarios in which linear k contribution may be suppressed are discussed. However, the cubic terms in the Hamiltonian are found to be different from the model derived using k times p theory, leading to different pseudospin symmetry in the Brillouin zone.
doi_str_mv 10.1103/PhysRevB.93.045108
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1235844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808065017</sourcerecordid><originalsourceid>FETCH-LOGICAL-o145t-fc0764a63e1910101525ffb5a24c6c37f678b2f87487e49147a895af7de5138f3</originalsourceid><addsrcrecordid>eNo9jk1LAzEYhIMoWLR_wFPwVA9b32y-j1rUCoVKreclm75hV9ZGN1mh_97FisxhBuZhGEKuGMwZA3770hzSBr_v55bPQUgG5oRMSqFsYa2yp_9ZwjmZpvQOAEyB1WAnZLltMPaYW-86mvKwO9AYaG6Q-qFuPd241NSOYgjoM3X5t3rtt-2az8aZG5qGPjiP6ZKcBdclnP75BXl7fNgulsVq_fS8uFsVkQmZi-BBK-EUR2YZjJKlDKGWrhReea6D0qYug9HCaBSWCe2MlS7oHUrGTeAX5Pq4G1Nuq-TbjL7xcb8f_1Ws5NIIMUKzI_TZx68BU64-2uSx69we45AqZsCAksA0_wECplvH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808065017</pqid></control><display><type>article</type><title>Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces</title><source>American Physical Society Journals</source><creator>Shanavas, K V</creator><creatorcontrib>Shanavas, K V ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The origin of Rashba spin splitting in the two-dimensional electron gas at the (001) surface of SrTiO sub(3) is studied using first-principles calculations and tight-binding model. Calculations of oxygen vacancies under virtual crystal approximation reveal a two-dimensional electron-gas subband structure similar to polar materials, consistent with observations on SrTiO sub(3). Our studies also confirm that k dependence of the spin splitting is predominantly cubic in the surface Ti-t sub(2g) states, even though structural relaxations diminish the effect in d sub(xy) bands. A tight-binding model, explicitly including Ti-d and O-p states as well as next-nearest-neighbor interactions, is derived to understand the first-principles results. Effective Rashba Hamiltonians for the surface bands are derived using quasidegenerate perturbation theory and scenarios in which linear k contribution may be suppressed are discussed. However, the cubic terms in the Hamiltonian are found to be different from the model derived using k times p theory, leading to different pseudospin symmetry in the Brillouin zone.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.93.045108</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>Condensed matter ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electron gas ; Mathematical analysis ; Mathematical models ; Splitting ; Strontium titanates ; Titanium ; Two dimensional</subject><ispartof>Physical review. B, 2016-01, Vol.93 (4)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1235844$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Shanavas, K V</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces</title><title>Physical review. B</title><description>The origin of Rashba spin splitting in the two-dimensional electron gas at the (001) surface of SrTiO sub(3) is studied using first-principles calculations and tight-binding model. Calculations of oxygen vacancies under virtual crystal approximation reveal a two-dimensional electron-gas subband structure similar to polar materials, consistent with observations on SrTiO sub(3). Our studies also confirm that k dependence of the spin splitting is predominantly cubic in the surface Ti-t sub(2g) states, even though structural relaxations diminish the effect in d sub(xy) bands. A tight-binding model, explicitly including Ti-d and O-p states as well as next-nearest-neighbor interactions, is derived to understand the first-principles results. Effective Rashba Hamiltonians for the surface bands are derived using quasidegenerate perturbation theory and scenarios in which linear k contribution may be suppressed are discussed. However, the cubic terms in the Hamiltonian are found to be different from the model derived using k times p theory, leading to different pseudospin symmetry in the Brillouin zone.</description><subject>Condensed matter</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electron gas</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Splitting</subject><subject>Strontium titanates</subject><subject>Titanium</subject><subject>Two dimensional</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9jk1LAzEYhIMoWLR_wFPwVA9b32y-j1rUCoVKreclm75hV9ZGN1mh_97FisxhBuZhGEKuGMwZA3770hzSBr_v55bPQUgG5oRMSqFsYa2yp_9ZwjmZpvQOAEyB1WAnZLltMPaYW-86mvKwO9AYaG6Q-qFuPd241NSOYgjoM3X5t3rtt-2az8aZG5qGPjiP6ZKcBdclnP75BXl7fNgulsVq_fS8uFsVkQmZi-BBK-EUR2YZjJKlDKGWrhReea6D0qYug9HCaBSWCe2MlS7oHUrGTeAX5Pq4G1Nuq-TbjL7xcb8f_1Ws5NIIMUKzI_TZx68BU64-2uSx69we45AqZsCAksA0_wECplvH</recordid><startdate>20160111</startdate><enddate>20160111</enddate><creator>Shanavas, K V</creator><general>American Physical Society (APS)</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160111</creationdate><title>Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces</title><author>Shanavas, K V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o145t-fc0764a63e1910101525ffb5a24c6c37f678b2f87487e49147a895af7de5138f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Condensed matter</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electron gas</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Splitting</topic><topic>Strontium titanates</topic><topic>Titanium</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shanavas, K V</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shanavas, K V</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces</atitle><jtitle>Physical review. B</jtitle><date>2016-01-11</date><risdate>2016</risdate><volume>93</volume><issue>4</issue><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>The origin of Rashba spin splitting in the two-dimensional electron gas at the (001) surface of SrTiO sub(3) is studied using first-principles calculations and tight-binding model. Calculations of oxygen vacancies under virtual crystal approximation reveal a two-dimensional electron-gas subband structure similar to polar materials, consistent with observations on SrTiO sub(3). Our studies also confirm that k dependence of the spin splitting is predominantly cubic in the surface Ti-t sub(2g) states, even though structural relaxations diminish the effect in d sub(xy) bands. A tight-binding model, explicitly including Ti-d and O-p states as well as next-nearest-neighbor interactions, is derived to understand the first-principles results. Effective Rashba Hamiltonians for the surface bands are derived using quasidegenerate perturbation theory and scenarios in which linear k contribution may be suppressed are discussed. However, the cubic terms in the Hamiltonian are found to be different from the model derived using k times p theory, leading to different pseudospin symmetry in the Brillouin zone.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevB.93.045108</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-01, Vol.93 (4)
issn 2469-9950
2469-9969
language eng
recordid cdi_osti_scitechconnect_1235844
source American Physical Society Journals
subjects Condensed matter
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Electron gas
Mathematical analysis
Mathematical models
Splitting
Strontium titanates
Titanium
Two dimensional
title Theoretical study of the cubic Rashba effect at the SrTiO3(001) surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20study%20of%20the%20cubic%20Rashba%20effect%20at%20the%20SrTiO3(001)%20surfaces&rft.jtitle=Physical%20review.%20B&rft.au=Shanavas,%20K%20V&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2016-01-11&rft.volume=93&rft.issue=4&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.93.045108&rft_dat=%3Cproquest_osti_%3E1808065017%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808065017&rft_id=info:pmid/&rfr_iscdi=true