Computational modeling of Krypton gas puffs with tailored mass density profiles on Z
Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requ...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2015-05, Vol.22 (5) |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 22 |
creator | Jennings, Christopher A. Ampleford, David J. Lamppa, Derek C. Hansen, Stephanie B. Jones, Brent Manley Harvey-Thompson, Adam James Jobe, Marc Ronald Lee Reneker, Joseph Rochau, Gregory A. Cuneo, Michael Edward Strizic, T. |
description | Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission. |
doi_str_mv | 10.1063/1.4921154 |
format | Article |
fullrecord | <record><control><sourceid>osti</sourceid><recordid>TN_cdi_osti_scitechconnect_1235346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1235346</sourcerecordid><originalsourceid>FETCH-LOGICAL-o182t-2b77e4a33483f9a94421ddeda43145c329af4d4fcfb2127ec6c9fac77633fc83</originalsourceid><addsrcrecordid>eNotjL1OwzAYAC0EEqUw8AYWe4rt74sdjygCiqjEkgGxVK5_WqMkjmJXqG8PCKa75Y6QW85WnEm45yvUgvMaz8iCs0ZXSio8_3XFKinx_ZJc5fzJGENZNwvStWmYjsWUmEbT0yE538dxT1Ogr_NpKmmke5PpdAwh069YDrSY2KfZOzqYnKnzY47lRKc5hdj7TH-Cj2tyEUyf_c0_l6R7euzadbV5e35pHzZV4o0oldgp5dEAYANBG40ouHPeGQSOtQWhTUCHwYad4EJ5K60OxiolAYJtYEnu_rYpl7jNNhZvDzaNo7dlywXUgBK-AVBKUbQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Computational modeling of Krypton gas puffs with tailored mass density profiles on Z</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jennings, Christopher A. ; Ampleford, David J. ; Lamppa, Derek C. ; Hansen, Stephanie B. ; Jones, Brent Manley ; Harvey-Thompson, Adam James ; Jobe, Marc Ronald Lee ; Reneker, Joseph ; Rochau, Gregory A. ; Cuneo, Michael Edward ; Strizic, T.</creator><creatorcontrib>Jennings, Christopher A. ; Ampleford, David J. ; Lamppa, Derek C. ; Hansen, Stephanie B. ; Jones, Brent Manley ; Harvey-Thompson, Adam James ; Jobe, Marc Ronald Lee ; Reneker, Joseph ; Rochau, Gregory A. ; Cuneo, Michael Edward ; Strizic, T. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/1.4921154</identifier><language>eng</language><publisher>United States: American Institute of Physics (AIP)</publisher><subject>electric currents ; electrical resistivity ; experiment design ; hydrological modeling ; MATHEMATICS AND COMPUTING ; photons</subject><ispartof>Physics of plasmas, 2015-05, Vol.22 (5)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1235346$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jennings, Christopher A.</creatorcontrib><creatorcontrib>Ampleford, David J.</creatorcontrib><creatorcontrib>Lamppa, Derek C.</creatorcontrib><creatorcontrib>Hansen, Stephanie B.</creatorcontrib><creatorcontrib>Jones, Brent Manley</creatorcontrib><creatorcontrib>Harvey-Thompson, Adam James</creatorcontrib><creatorcontrib>Jobe, Marc Ronald Lee</creatorcontrib><creatorcontrib>Reneker, Joseph</creatorcontrib><creatorcontrib>Rochau, Gregory A.</creatorcontrib><creatorcontrib>Cuneo, Michael Edward</creatorcontrib><creatorcontrib>Strizic, T.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Computational modeling of Krypton gas puffs with tailored mass density profiles on Z</title><title>Physics of plasmas</title><description>Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.</description><subject>electric currents</subject><subject>electrical resistivity</subject><subject>experiment design</subject><subject>hydrological modeling</subject><subject>MATHEMATICS AND COMPUTING</subject><subject>photons</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotjL1OwzAYAC0EEqUw8AYWe4rt74sdjygCiqjEkgGxVK5_WqMkjmJXqG8PCKa75Y6QW85WnEm45yvUgvMaz8iCs0ZXSio8_3XFKinx_ZJc5fzJGENZNwvStWmYjsWUmEbT0yE538dxT1Ogr_NpKmmke5PpdAwh069YDrSY2KfZOzqYnKnzY47lRKc5hdj7TH-Cj2tyEUyf_c0_l6R7euzadbV5e35pHzZV4o0oldgp5dEAYANBG40ouHPeGQSOtQWhTUCHwYad4EJ5K60OxiolAYJtYEnu_rYpl7jNNhZvDzaNo7dlywXUgBK-AVBKUbQ</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Jennings, Christopher A.</creator><creator>Ampleford, David J.</creator><creator>Lamppa, Derek C.</creator><creator>Hansen, Stephanie B.</creator><creator>Jones, Brent Manley</creator><creator>Harvey-Thompson, Adam James</creator><creator>Jobe, Marc Ronald Lee</creator><creator>Reneker, Joseph</creator><creator>Rochau, Gregory A.</creator><creator>Cuneo, Michael Edward</creator><creator>Strizic, T.</creator><general>American Institute of Physics (AIP)</general><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150501</creationdate><title>Computational modeling of Krypton gas puffs with tailored mass density profiles on Z</title><author>Jennings, Christopher A. ; Ampleford, David J. ; Lamppa, Derek C. ; Hansen, Stephanie B. ; Jones, Brent Manley ; Harvey-Thompson, Adam James ; Jobe, Marc Ronald Lee ; Reneker, Joseph ; Rochau, Gregory A. ; Cuneo, Michael Edward ; Strizic, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-o182t-2b77e4a33483f9a94421ddeda43145c329af4d4fcfb2127ec6c9fac77633fc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>electric currents</topic><topic>electrical resistivity</topic><topic>experiment design</topic><topic>hydrological modeling</topic><topic>MATHEMATICS AND COMPUTING</topic><topic>photons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jennings, Christopher A.</creatorcontrib><creatorcontrib>Ampleford, David J.</creatorcontrib><creatorcontrib>Lamppa, Derek C.</creatorcontrib><creatorcontrib>Hansen, Stephanie B.</creatorcontrib><creatorcontrib>Jones, Brent Manley</creatorcontrib><creatorcontrib>Harvey-Thompson, Adam James</creatorcontrib><creatorcontrib>Jobe, Marc Ronald Lee</creatorcontrib><creatorcontrib>Reneker, Joseph</creatorcontrib><creatorcontrib>Rochau, Gregory A.</creatorcontrib><creatorcontrib>Cuneo, Michael Edward</creatorcontrib><creatorcontrib>Strizic, T.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jennings, Christopher A.</au><au>Ampleford, David J.</au><au>Lamppa, Derek C.</au><au>Hansen, Stephanie B.</au><au>Jones, Brent Manley</au><au>Harvey-Thompson, Adam James</au><au>Jobe, Marc Ronald Lee</au><au>Reneker, Joseph</au><au>Rochau, Gregory A.</au><au>Cuneo, Michael Edward</au><au>Strizic, T.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational modeling of Krypton gas puffs with tailored mass density profiles on Z</atitle><jtitle>Physics of plasmas</jtitle><date>2015-05-01</date><risdate>2015</risdate><volume>22</volume><issue>5</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><abstract>Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.</abstract><cop>United States</cop><pub>American Institute of Physics (AIP)</pub><doi>10.1063/1.4921154</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2015-05, Vol.22 (5) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_osti_scitechconnect_1235346 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | electric currents electrical resistivity experiment design hydrological modeling MATHEMATICS AND COMPUTING photons |
title | Computational modeling of Krypton gas puffs with tailored mass density profiles on Z |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T14%3A14%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-osti&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20modeling%20of%20Krypton%20gas%20puffs%20with%20tailored%20mass%20density%20profiles%20on%20Z&rft.jtitle=Physics%20of%20plasmas&rft.au=Jennings,%20Christopher%20A.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2015-05-01&rft.volume=22&rft.issue=5&rft.issn=1070-664X&rft.eissn=1089-7674&rft_id=info:doi/10.1063/1.4921154&rft_dat=%3Costi%3E1235346%3C/osti%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |