Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor

We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2015-05, Vol.106 (20)
Hauptverfasser: Curry, M. J., England, T. D., Bishop, N. C., Ten-Eyck, G., Wendt, J. R., Pluym, T., Lilly, M. P., Carr, S. M., Carroll, M. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Applied physics letters
container_volume 106
creator Curry, M. J.
England, T. D.
Bishop, N. C.
Ten-Eyck, G.
Wendt, J. R.
Pluym, T.
Lilly, M. P.
Carr, S. M.
Carroll, M. S.
description We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.
doi_str_mv 10.1063/1.4921308
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1235274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2124759990</sourcerecordid><originalsourceid>FETCH-LOGICAL-c385t-e77fc80d948cc29be38dc074b355ce9a2b0eb8cbb1bb8912f724062fa972d9e13</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWKsL_8GgKxepecw0yVKKLyi40XVI0jttyjQZk4zQf-_UduHqcjnfPZx7ELqlZEbJnD_SWa0Y5USeoQklQmBOqTxHE0IIx3PV0Et0lfN2XBvG-QT9LNI-riF4V_UJzK7vfOudKT6GKraVqbIP6w4wdOBKigGXZEL2ucRUDQftD-m8G6U1pJ0JfthVGyiQ4nYI7mCEre9jZ9K_22t00Zouw81pTtHXy_Pn4g0vP17fF09L7LhsCgYhWifJStXSOaYscLlyRNSWN40DZZglYKWzllorFWWtYDWZs9YowVYKKJ-iu6NvzMXr7HwBtxmzhvEbTRlvmKhH6P4I9Sl-D5CL3sYhhTGXZpTVolFKkZF6OFIuxZwTtLpPfmfSXlOiD91rqk_d818PGHkH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2124759990</pqid></control><display><type>article</type><title>Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Curry, M. J. ; England, T. D. ; Bishop, N. C. ; Ten-Eyck, G. ; Wendt, J. R. ; Pluym, T. ; Lilly, M. P. ; Carr, S. M. ; Carroll, M. S.</creator><creatorcontrib>Curry, M. J. ; England, T. D. ; Bishop, N. C. ; Ten-Eyck, G. ; Wendt, J. R. ; Pluym, T. ; Lilly, M. P. ; Carr, S. M. ; Carroll, M. S. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States) ; Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States</creatorcontrib><description>We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4921308</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Amplification ; Applied physics ; Circuits ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Dissipation factor ; Electrons ; Frequency response ; Heterojunction bipolar transistors ; INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; Liquid helium ; Semiconductor devices ; Silicon ; Single-electron transistors ; Transistors</subject><ispartof>Applied physics letters, 2015-05, Vol.106 (20)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c385t-e77fc80d948cc29be38dc074b355ce9a2b0eb8cbb1bb8912f724062fa972d9e13</citedby><cites>FETCH-LOGICAL-c385t-e77fc80d948cc29be38dc074b355ce9a2b0eb8cbb1bb8912f724062fa972d9e13</cites><orcidid>0000-0001-6756-1740</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1235274$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Curry, M. J.</creatorcontrib><creatorcontrib>England, T. D.</creatorcontrib><creatorcontrib>Bishop, N. C.</creatorcontrib><creatorcontrib>Ten-Eyck, G.</creatorcontrib><creatorcontrib>Wendt, J. R.</creatorcontrib><creatorcontrib>Pluym, T.</creatorcontrib><creatorcontrib>Lilly, M. P.</creatorcontrib><creatorcontrib>Carr, S. M.</creatorcontrib><creatorcontrib>Carroll, M. S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States</creatorcontrib><title>Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor</title><title>Applied physics letters</title><description>We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.</description><subject>Amplification</subject><subject>Applied physics</subject><subject>Circuits</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Dissipation factor</subject><subject>Electrons</subject><subject>Frequency response</subject><subject>Heterojunction bipolar transistors</subject><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>Liquid helium</subject><subject>Semiconductor devices</subject><subject>Silicon</subject><subject>Single-electron transistors</subject><subject>Transistors</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLAzEUhYMoWKsL_8GgKxepecw0yVKKLyi40XVI0jttyjQZk4zQf-_UduHqcjnfPZx7ELqlZEbJnD_SWa0Y5USeoQklQmBOqTxHE0IIx3PV0Et0lfN2XBvG-QT9LNI-riF4V_UJzK7vfOudKT6GKraVqbIP6w4wdOBKigGXZEL2ucRUDQftD-m8G6U1pJ0JfthVGyiQ4nYI7mCEre9jZ9K_22t00Zouw81pTtHXy_Pn4g0vP17fF09L7LhsCgYhWifJStXSOaYscLlyRNSWN40DZZglYKWzllorFWWtYDWZs9YowVYKKJ-iu6NvzMXr7HwBtxmzhvEbTRlvmKhH6P4I9Sl-D5CL3sYhhTGXZpTVolFKkZF6OFIuxZwTtLpPfmfSXlOiD91rqk_d818PGHkH</recordid><startdate>20150518</startdate><enddate>20150518</enddate><creator>Curry, M. J.</creator><creator>England, T. D.</creator><creator>Bishop, N. C.</creator><creator>Ten-Eyck, G.</creator><creator>Wendt, J. R.</creator><creator>Pluym, T.</creator><creator>Lilly, M. P.</creator><creator>Carr, S. M.</creator><creator>Carroll, M. S.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6756-1740</orcidid></search><sort><creationdate>20150518</creationdate><title>Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor</title><author>Curry, M. J. ; England, T. D. ; Bishop, N. C. ; Ten-Eyck, G. ; Wendt, J. R. ; Pluym, T. ; Lilly, M. P. ; Carr, S. M. ; Carroll, M. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c385t-e77fc80d948cc29be38dc074b355ce9a2b0eb8cbb1bb8912f724062fa972d9e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amplification</topic><topic>Applied physics</topic><topic>Circuits</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Dissipation factor</topic><topic>Electrons</topic><topic>Frequency response</topic><topic>Heterojunction bipolar transistors</topic><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>Liquid helium</topic><topic>Semiconductor devices</topic><topic>Silicon</topic><topic>Single-electron transistors</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curry, M. J.</creatorcontrib><creatorcontrib>England, T. D.</creatorcontrib><creatorcontrib>Bishop, N. C.</creatorcontrib><creatorcontrib>Ten-Eyck, G.</creatorcontrib><creatorcontrib>Wendt, J. R.</creatorcontrib><creatorcontrib>Pluym, T.</creatorcontrib><creatorcontrib>Lilly, M. P.</creatorcontrib><creatorcontrib>Carr, S. M.</creatorcontrib><creatorcontrib>Carroll, M. S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><creatorcontrib>Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curry, M. J.</au><au>England, T. D.</au><au>Bishop, N. C.</au><au>Ten-Eyck, G.</au><au>Wendt, J. R.</au><au>Pluym, T.</au><au>Lilly, M. P.</au><au>Carr, S. M.</au><au>Carroll, M. S.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><aucorp>Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor</atitle><jtitle>Applied physics letters</jtitle><date>2015-05-18</date><risdate>2015</risdate><volume>106</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid helium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10–100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 μW for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4921308</doi><orcidid>https://orcid.org/0000-0001-6756-1740</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2015-05, Vol.106 (20)
issn 0003-6951
1077-3118
language eng
recordid cdi_osti_scitechconnect_1235274
source AIP Journals Complete; Alma/SFX Local Collection
subjects Amplification
Applied physics
Circuits
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Dissipation factor
Electrons
Frequency response
Heterojunction bipolar transistors
INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY
Liquid helium
Semiconductor devices
Silicon
Single-electron transistors
Transistors
title Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T01%3A51%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryogenic%20preamplification%20of%20a%20single-electron-transistor%20using%20a%20silicon-germanium%20heterojunction-bipolar-transistor&rft.jtitle=Applied%20physics%20letters&rft.au=Curry,%20M.%20J.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2015-05-18&rft.volume=106&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4921308&rft_dat=%3Cproquest_osti_%3E2124759990%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2124759990&rft_id=info:pmid/&rfr_iscdi=true