Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation
The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2016-03, Vol.470, p.278-289 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 289 |
---|---|
container_issue | |
container_start_page | 278 |
container_title | Journal of nuclear materials |
container_volume | 470 |
creator | Hu, Xunxiang Koyanagi, Takaaki Fukuda, Makoto Katoh, Yutai Snead, Lance L. Wirth, Brian D. |
description | The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects. |
doi_str_mv | 10.1016/j.jnucmat.2015.12.040 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1234347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311515304098</els_id><sourcerecordid>1825442159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-b6fdf5aec3a51cff7abe78dcd8b25c4c0a3e136a66783780610a4bdf94c1d50f3</originalsourceid><addsrcrecordid>eNqNkUtvFDEQhC0EEkuSn4BkceIyQ_s1M3tCKISHFIlLOFteux08mrUX2xOUfx8PmzucWmp9VaruIuQtg54BGz7M_RxXezS158BUz3gPEl6QHZtG0cmJw0uyA-C8E4yp1-RNKTMAqD2oHZk_o0dbKT6kZa0hRRoiLSHeL0htfizVLEuISOsa70vFSH1alvSnAbQNWvF4wmzqmpGa6P7uXCpII641b245GxfM5nxJXnmzFLx6nhfk55ebu-tv3e2Pr9-vP912VilZu8PgnVcGrTCKWe9Hc8BxctZNB66stGAEMjGYYRgnMU4wMDDy4PxeWuYUeHFB3p19U6lBFxsq2l82xdju1IwLKeTYoPdn6JTT7xVL1cdQLC6LiZjWotnElZScqf1_oDCNTI1KNVSdUZtTKRm9PuVwNPlRM9BbV3rWz13prasWR7eumu7jWYftLw8B8xYbo0UX8pbapfAPhyfdTKJ7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808715755</pqid></control><display><type>article</type><title>Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hu, Xunxiang ; Koyanagi, Takaaki ; Fukuda, Makoto ; Katoh, Yutai ; Snead, Lance L. ; Wirth, Brian D.</creator><creatorcontrib>Hu, Xunxiang ; Koyanagi, Takaaki ; Fukuda, Makoto ; Katoh, Yutai ; Snead, Lance L. ; Wirth, Brian D. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</creatorcontrib><description>The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2015.12.040</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Annealing ; Crystal defects ; Defect annealing ; Evolution ; Neutron irradiation ; Transmission electron microscopy ; Tungsten ; Vacancies</subject><ispartof>Journal of nuclear materials, 2016-03, Vol.470, p.278-289</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-b6fdf5aec3a51cff7abe78dcd8b25c4c0a3e136a66783780610a4bdf94c1d50f3</citedby><cites>FETCH-LOGICAL-c554t-b6fdf5aec3a51cff7abe78dcd8b25c4c0a3e136a66783780610a4bdf94c1d50f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2015.12.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1234347$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Xunxiang</creatorcontrib><creatorcontrib>Koyanagi, Takaaki</creatorcontrib><creatorcontrib>Fukuda, Makoto</creatorcontrib><creatorcontrib>Katoh, Yutai</creatorcontrib><creatorcontrib>Snead, Lance L.</creatorcontrib><creatorcontrib>Wirth, Brian D.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</creatorcontrib><title>Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation</title><title>Journal of nuclear materials</title><description>The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.</description><subject>Annealing</subject><subject>Crystal defects</subject><subject>Defect annealing</subject><subject>Evolution</subject><subject>Neutron irradiation</subject><subject>Transmission electron microscopy</subject><subject>Tungsten</subject><subject>Vacancies</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUtvFDEQhC0EEkuSn4BkceIyQ_s1M3tCKISHFIlLOFteux08mrUX2xOUfx8PmzucWmp9VaruIuQtg54BGz7M_RxXezS158BUz3gPEl6QHZtG0cmJw0uyA-C8E4yp1-RNKTMAqD2oHZk_o0dbKT6kZa0hRRoiLSHeL0htfizVLEuISOsa70vFSH1alvSnAbQNWvF4wmzqmpGa6P7uXCpII641b245GxfM5nxJXnmzFLx6nhfk55ebu-tv3e2Pr9-vP912VilZu8PgnVcGrTCKWe9Hc8BxctZNB66stGAEMjGYYRgnMU4wMDDy4PxeWuYUeHFB3p19U6lBFxsq2l82xdju1IwLKeTYoPdn6JTT7xVL1cdQLC6LiZjWotnElZScqf1_oDCNTI1KNVSdUZtTKRm9PuVwNPlRM9BbV3rWz13prasWR7eumu7jWYftLw8B8xYbo0UX8pbapfAPhyfdTKJ7</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Hu, Xunxiang</creator><creator>Koyanagi, Takaaki</creator><creator>Fukuda, Makoto</creator><creator>Katoh, Yutai</creator><creator>Snead, Lance L.</creator><creator>Wirth, Brian D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160301</creationdate><title>Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation</title><author>Hu, Xunxiang ; Koyanagi, Takaaki ; Fukuda, Makoto ; Katoh, Yutai ; Snead, Lance L. ; Wirth, Brian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-b6fdf5aec3a51cff7abe78dcd8b25c4c0a3e136a66783780610a4bdf94c1d50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annealing</topic><topic>Crystal defects</topic><topic>Defect annealing</topic><topic>Evolution</topic><topic>Neutron irradiation</topic><topic>Transmission electron microscopy</topic><topic>Tungsten</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xunxiang</creatorcontrib><creatorcontrib>Koyanagi, Takaaki</creatorcontrib><creatorcontrib>Fukuda, Makoto</creatorcontrib><creatorcontrib>Katoh, Yutai</creatorcontrib><creatorcontrib>Snead, Lance L.</creatorcontrib><creatorcontrib>Wirth, Brian D.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xunxiang</au><au>Koyanagi, Takaaki</au><au>Fukuda, Makoto</au><au>Katoh, Yutai</au><au>Snead, Lance L.</au><au>Wirth, Brian D.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation</atitle><jtitle>Journal of nuclear materials</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>470</volume><spage>278</spage><epage>289</epage><pages>278-289</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2015.12.040</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2016-03, Vol.470, p.278-289 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_osti_scitechconnect_1234347 |
source | Access via ScienceDirect (Elsevier) |
subjects | Annealing Crystal defects Defect annealing Evolution Neutron irradiation Transmission electron microscopy Tungsten Vacancies |
title | Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20evolution%20in%20single%20crystalline%20tungsten%20following%20low%20temperature%20and%20low%20dose%20neutron%20irradiation&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Hu,%20Xunxiang&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20High%20Flux%20Isotope%20Reactor%20(HFIR)&rft.date=2016-03-01&rft.volume=470&rft.spage=278&rft.epage=289&rft.pages=278-289&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2015.12.040&rft_dat=%3Cproquest_osti_%3E1825442159%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808715755&rft_id=info:pmid/&rft_els_id=S0022311515304098&rfr_iscdi=true |