Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear materials 2016-03, Vol.470, p.278-289
Hauptverfasser: Hu, Xunxiang, Koyanagi, Takaaki, Fukuda, Makoto, Katoh, Yutai, Snead, Lance L., Wirth, Brian D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 289
container_issue
container_start_page 278
container_title Journal of nuclear materials
container_volume 470
creator Hu, Xunxiang
Koyanagi, Takaaki
Fukuda, Makoto
Katoh, Yutai
Snead, Lance L.
Wirth, Brian D.
description The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.
doi_str_mv 10.1016/j.jnucmat.2015.12.040
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1234347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022311515304098</els_id><sourcerecordid>1825442159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-b6fdf5aec3a51cff7abe78dcd8b25c4c0a3e136a66783780610a4bdf94c1d50f3</originalsourceid><addsrcrecordid>eNqNkUtvFDEQhC0EEkuSn4BkceIyQ_s1M3tCKISHFIlLOFteux08mrUX2xOUfx8PmzucWmp9VaruIuQtg54BGz7M_RxXezS158BUz3gPEl6QHZtG0cmJw0uyA-C8E4yp1-RNKTMAqD2oHZk_o0dbKT6kZa0hRRoiLSHeL0htfizVLEuISOsa70vFSH1alvSnAbQNWvF4wmzqmpGa6P7uXCpII641b245GxfM5nxJXnmzFLx6nhfk55ebu-tv3e2Pr9-vP912VilZu8PgnVcGrTCKWe9Hc8BxctZNB66stGAEMjGYYRgnMU4wMDDy4PxeWuYUeHFB3p19U6lBFxsq2l82xdju1IwLKeTYoPdn6JTT7xVL1cdQLC6LiZjWotnElZScqf1_oDCNTI1KNVSdUZtTKRm9PuVwNPlRM9BbV3rWz13prasWR7eumu7jWYftLw8B8xYbo0UX8pbapfAPhyfdTKJ7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808715755</pqid></control><display><type>article</type><title>Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Hu, Xunxiang ; Koyanagi, Takaaki ; Fukuda, Makoto ; Katoh, Yutai ; Snead, Lance L. ; Wirth, Brian D.</creator><creatorcontrib>Hu, Xunxiang ; Koyanagi, Takaaki ; Fukuda, Makoto ; Katoh, Yutai ; Snead, Lance L. ; Wirth, Brian D. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</creatorcontrib><description>The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2015.12.040</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Annealing ; Crystal defects ; Defect annealing ; Evolution ; Neutron irradiation ; Transmission electron microscopy ; Tungsten ; Vacancies</subject><ispartof>Journal of nuclear materials, 2016-03, Vol.470, p.278-289</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-b6fdf5aec3a51cff7abe78dcd8b25c4c0a3e136a66783780610a4bdf94c1d50f3</citedby><cites>FETCH-LOGICAL-c554t-b6fdf5aec3a51cff7abe78dcd8b25c4c0a3e136a66783780610a4bdf94c1d50f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2015.12.040$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,782,786,887,3554,27933,27934,46004</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1234347$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hu, Xunxiang</creatorcontrib><creatorcontrib>Koyanagi, Takaaki</creatorcontrib><creatorcontrib>Fukuda, Makoto</creatorcontrib><creatorcontrib>Katoh, Yutai</creatorcontrib><creatorcontrib>Snead, Lance L.</creatorcontrib><creatorcontrib>Wirth, Brian D.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</creatorcontrib><title>Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation</title><title>Journal of nuclear materials</title><description>The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.</description><subject>Annealing</subject><subject>Crystal defects</subject><subject>Defect annealing</subject><subject>Evolution</subject><subject>Neutron irradiation</subject><subject>Transmission electron microscopy</subject><subject>Tungsten</subject><subject>Vacancies</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkUtvFDEQhC0EEkuSn4BkceIyQ_s1M3tCKISHFIlLOFteux08mrUX2xOUfx8PmzucWmp9VaruIuQtg54BGz7M_RxXezS158BUz3gPEl6QHZtG0cmJw0uyA-C8E4yp1-RNKTMAqD2oHZk_o0dbKT6kZa0hRRoiLSHeL0htfizVLEuISOsa70vFSH1alvSnAbQNWvF4wmzqmpGa6P7uXCpII641b245GxfM5nxJXnmzFLx6nhfk55ebu-tv3e2Pr9-vP912VilZu8PgnVcGrTCKWe9Hc8BxctZNB66stGAEMjGYYRgnMU4wMDDy4PxeWuYUeHFB3p19U6lBFxsq2l82xdju1IwLKeTYoPdn6JTT7xVL1cdQLC6LiZjWotnElZScqf1_oDCNTI1KNVSdUZtTKRm9PuVwNPlRM9BbV3rWz13prasWR7eumu7jWYftLw8B8xYbo0UX8pbapfAPhyfdTKJ7</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Hu, Xunxiang</creator><creator>Koyanagi, Takaaki</creator><creator>Fukuda, Makoto</creator><creator>Katoh, Yutai</creator><creator>Snead, Lance L.</creator><creator>Wirth, Brian D.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7QQ</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20160301</creationdate><title>Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation</title><author>Hu, Xunxiang ; Koyanagi, Takaaki ; Fukuda, Makoto ; Katoh, Yutai ; Snead, Lance L. ; Wirth, Brian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-b6fdf5aec3a51cff7abe78dcd8b25c4c0a3e136a66783780610a4bdf94c1d50f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Annealing</topic><topic>Crystal defects</topic><topic>Defect annealing</topic><topic>Evolution</topic><topic>Neutron irradiation</topic><topic>Transmission electron microscopy</topic><topic>Tungsten</topic><topic>Vacancies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Xunxiang</creatorcontrib><creatorcontrib>Koyanagi, Takaaki</creatorcontrib><creatorcontrib>Fukuda, Makoto</creatorcontrib><creatorcontrib>Katoh, Yutai</creatorcontrib><creatorcontrib>Snead, Lance L.</creatorcontrib><creatorcontrib>Wirth, Brian D.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Xunxiang</au><au>Koyanagi, Takaaki</au><au>Fukuda, Makoto</au><au>Katoh, Yutai</au><au>Snead, Lance L.</au><au>Wirth, Brian D.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). High Flux Isotope Reactor (HFIR)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation</atitle><jtitle>Journal of nuclear materials</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>470</volume><spage>278</spage><epage>289</epage><pages>278-289</pages><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2015.12.040</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3115
ispartof Journal of nuclear materials, 2016-03, Vol.470, p.278-289
issn 0022-3115
1873-4820
language eng
recordid cdi_osti_scitechconnect_1234347
source Access via ScienceDirect (Elsevier)
subjects Annealing
Crystal defects
Defect annealing
Evolution
Neutron irradiation
Transmission electron microscopy
Tungsten
Vacancies
title Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T07%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defect%20evolution%20in%20single%20crystalline%20tungsten%20following%20low%20temperature%20and%20low%20dose%20neutron%20irradiation&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Hu,%20Xunxiang&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20High%20Flux%20Isotope%20Reactor%20(HFIR)&rft.date=2016-03-01&rft.volume=470&rft.spage=278&rft.epage=289&rft.pages=278-289&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2015.12.040&rft_dat=%3Cproquest_osti_%3E1825442159%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1808715755&rft_id=info:pmid/&rft_els_id=S0022311515304098&rfr_iscdi=true