Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law

We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness < 200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2015-12, Vol.92 (21), Article 214410
Hauptverfasser: Avery, A. D., Mason, S. J., Bassett, D., Wesenberg, D., Zink, B. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Physical review. B
container_volume 92
creator Avery, A. D.
Mason, S. J.
Bassett, D.
Wesenberg, D.
Zink, B. L.
description We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness < 200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a single film and an accurate probe of the Wiedemann-Franz (WF) law expected to relate the two. Through careful elimination of possible effects of surface scattering of phonons in the supporting membrane, we find excellent agreement with WF in a thin Ni-Fe film over nearly the entire temperature range from 77 to 325 K. All other materials studied here deviate somewhat from the WF prediction of electronic thermal conductivity with a Lorenz number, L, suppressed from the free-electron value by 10% to 20%. For Al and Cu we compare the results to predictions of the theoretical expression for the Lorenz number as a function of T. This comparison indicates two different types of deviation from expected behavior. In the Cu film, a higher than expected L at lower T indicates an additional thermal conduction mechanism, while at higher T lower than expected values suggests an additional inelastic scattering mechanism for electrons. We suggest the additional low-T L indicates a phonon contribution to thermal conductivity and consider increased electron-phonon scattering at grain boundaries or surfaces to explain the high-T reduction in L.
doi_str_mv 10.1103/PhysRevB.92.214410
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1228418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793262426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-ae9c8988f43739ca2c6bd0c0c79e79d3078bc69e1e1ab2116406d514b04fac293</originalsourceid><addsrcrecordid>eNo1kctOwzAQRSMEElD4AVYWKxZN8ThuEi-h4iVVgFAR7CzXmahGjl1iFwifwFcTCKzGIx0f6c5NkiOgEwCand6vuvCAb-cTwSYMOAe6lezBdEpTlk2ft_s3FWVKgcFush_CC6XABWd7yddihW2jLFGuImhRx9boftXeVRsdzZuJHfE1Uet16z9MoyLajgClqWvI-ver9d2Y3JoxmfkxObPjX9VsQ2pjmzB4P1RjnIrGux9XXCF5Mlhho5xLL1vlPslcvR8kO7WyAQ__5ih5vLxYzK7T-d3Vzexsnmqe5zFVKHQpyrLmWZEJrZjOlxXVVBcCC1FltCiXOhcICGrJAHJO82oKfEl5rTQT2Sg5Hrw-RCODNhH1qs_r-vASGCs5lD10MkB97NcNhigbEzRaqxz6TZBQiIzljLO8R9mA6taH0GIt121_qLaTQOVPO_K_HSmYHNrJvgEMRYRo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793262426</pqid></control><display><type>article</type><title>Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law</title><source>American Physical Society Journals</source><creator>Avery, A. D. ; Mason, S. J. ; Bassett, D. ; Wesenberg, D. ; Zink, B. L.</creator><creatorcontrib>Avery, A. D. ; Mason, S. J. ; Bassett, D. ; Wesenberg, D. ; Zink, B. L.</creatorcontrib><description>We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness &lt; 200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a single film and an accurate probe of the Wiedemann-Franz (WF) law expected to relate the two. Through careful elimination of possible effects of surface scattering of phonons in the supporting membrane, we find excellent agreement with WF in a thin Ni-Fe film over nearly the entire temperature range from 77 to 325 K. All other materials studied here deviate somewhat from the WF prediction of electronic thermal conductivity with a Lorenz number, L, suppressed from the free-electron value by 10% to 20%. For Al and Cu we compare the results to predictions of the theoretical expression for the Lorenz number as a function of T. This comparison indicates two different types of deviation from expected behavior. In the Cu film, a higher than expected L at lower T indicates an additional thermal conduction mechanism, while at higher T lower than expected values suggests an additional inelastic scattering mechanism for electrons. We suggest the additional low-T L indicates a phonon contribution to thermal conductivity and consider increased electron-phonon scattering at grain boundaries or surfaces to explain the high-T reduction in L.</description><identifier>ISSN: 1098-0121</identifier><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 1550-235X</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.92.214410</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Aluminum ; Copper ; ELECTRICAL CONDUCTIVITY ; Lorenz number ; MICROMACHINING ; Nickel ; Permalloy ; Phonons ; Resistivity ; Thermal conductivity ; THIN FILMS ; WIEDEMANN FRANZ RATIO</subject><ispartof>Physical review. B, 2015-12, Vol.92 (21), Article 214410</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-ae9c8988f43739ca2c6bd0c0c79e79d3078bc69e1e1ab2116406d514b04fac293</citedby><cites>FETCH-LOGICAL-c466t-ae9c8988f43739ca2c6bd0c0c79e79d3078bc69e1e1ab2116406d514b04fac293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1228418$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Avery, A. D.</creatorcontrib><creatorcontrib>Mason, S. J.</creatorcontrib><creatorcontrib>Bassett, D.</creatorcontrib><creatorcontrib>Wesenberg, D.</creatorcontrib><creatorcontrib>Zink, B. L.</creatorcontrib><title>Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law</title><title>Physical review. B</title><description>We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness &lt; 200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a single film and an accurate probe of the Wiedemann-Franz (WF) law expected to relate the two. Through careful elimination of possible effects of surface scattering of phonons in the supporting membrane, we find excellent agreement with WF in a thin Ni-Fe film over nearly the entire temperature range from 77 to 325 K. All other materials studied here deviate somewhat from the WF prediction of electronic thermal conductivity with a Lorenz number, L, suppressed from the free-electron value by 10% to 20%. For Al and Cu we compare the results to predictions of the theoretical expression for the Lorenz number as a function of T. This comparison indicates two different types of deviation from expected behavior. In the Cu film, a higher than expected L at lower T indicates an additional thermal conduction mechanism, while at higher T lower than expected values suggests an additional inelastic scattering mechanism for electrons. We suggest the additional low-T L indicates a phonon contribution to thermal conductivity and consider increased electron-phonon scattering at grain boundaries or surfaces to explain the high-T reduction in L.</description><subject>Aluminum</subject><subject>Copper</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Lorenz number</subject><subject>MICROMACHINING</subject><subject>Nickel</subject><subject>Permalloy</subject><subject>Phonons</subject><subject>Resistivity</subject><subject>Thermal conductivity</subject><subject>THIN FILMS</subject><subject>WIEDEMANN FRANZ RATIO</subject><issn>1098-0121</issn><issn>2469-9950</issn><issn>1550-235X</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kctOwzAQRSMEElD4AVYWKxZN8ThuEi-h4iVVgFAR7CzXmahGjl1iFwifwFcTCKzGIx0f6c5NkiOgEwCand6vuvCAb-cTwSYMOAe6lezBdEpTlk2ft_s3FWVKgcFush_CC6XABWd7yddihW2jLFGuImhRx9boftXeVRsdzZuJHfE1Uet16z9MoyLajgClqWvI-ver9d2Y3JoxmfkxObPjX9VsQ2pjmzB4P1RjnIrGux9XXCF5Mlhho5xLL1vlPslcvR8kO7WyAQ__5ih5vLxYzK7T-d3Vzexsnmqe5zFVKHQpyrLmWZEJrZjOlxXVVBcCC1FltCiXOhcICGrJAHJO82oKfEl5rTQT2Sg5Hrw-RCODNhH1qs_r-vASGCs5lD10MkB97NcNhigbEzRaqxz6TZBQiIzljLO8R9mA6taH0GIt121_qLaTQOVPO_K_HSmYHNrJvgEMRYRo</recordid><startdate>20151208</startdate><enddate>20151208</enddate><creator>Avery, A. D.</creator><creator>Mason, S. J.</creator><creator>Bassett, D.</creator><creator>Wesenberg, D.</creator><creator>Zink, B. L.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151208</creationdate><title>Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law</title><author>Avery, A. D. ; Mason, S. J. ; Bassett, D. ; Wesenberg, D. ; Zink, B. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-ae9c8988f43739ca2c6bd0c0c79e79d3078bc69e1e1ab2116406d514b04fac293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aluminum</topic><topic>Copper</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Lorenz number</topic><topic>MICROMACHINING</topic><topic>Nickel</topic><topic>Permalloy</topic><topic>Phonons</topic><topic>Resistivity</topic><topic>Thermal conductivity</topic><topic>THIN FILMS</topic><topic>WIEDEMANN FRANZ RATIO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avery, A. D.</creatorcontrib><creatorcontrib>Mason, S. J.</creatorcontrib><creatorcontrib>Bassett, D.</creatorcontrib><creatorcontrib>Wesenberg, D.</creatorcontrib><creatorcontrib>Zink, B. L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avery, A. D.</au><au>Mason, S. J.</au><au>Bassett, D.</au><au>Wesenberg, D.</au><au>Zink, B. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law</atitle><jtitle>Physical review. B</jtitle><date>2015-12-08</date><risdate>2015</risdate><volume>92</volume><issue>21</issue><artnum>214410</artnum><issn>1098-0121</issn><issn>2469-9950</issn><eissn>1550-235X</eissn><eissn>2469-9969</eissn><abstract>We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness &lt; 200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a single film and an accurate probe of the Wiedemann-Franz (WF) law expected to relate the two. Through careful elimination of possible effects of surface scattering of phonons in the supporting membrane, we find excellent agreement with WF in a thin Ni-Fe film over nearly the entire temperature range from 77 to 325 K. All other materials studied here deviate somewhat from the WF prediction of electronic thermal conductivity with a Lorenz number, L, suppressed from the free-electron value by 10% to 20%. For Al and Cu we compare the results to predictions of the theoretical expression for the Lorenz number as a function of T. This comparison indicates two different types of deviation from expected behavior. In the Cu film, a higher than expected L at lower T indicates an additional thermal conduction mechanism, while at higher T lower than expected values suggests an additional inelastic scattering mechanism for electrons. We suggest the additional low-T L indicates a phonon contribution to thermal conductivity and consider increased electron-phonon scattering at grain boundaries or surfaces to explain the high-T reduction in L.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.92.214410</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, 2015-12, Vol.92 (21), Article 214410
issn 1098-0121
2469-9950
1550-235X
2469-9969
language eng
recordid cdi_osti_scitechconnect_1228418
source American Physical Society Journals
subjects Aluminum
Copper
ELECTRICAL CONDUCTIVITY
Lorenz number
MICROMACHINING
Nickel
Permalloy
Phonons
Resistivity
Thermal conductivity
THIN FILMS
WIEDEMANN FRANZ RATIO
title Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20electrical%20conductivity%20of%20approximately%20100-nm%20permalloy,%20Ni,%20Co,%20Al,%20and%20Cu%20films%20and%20examination%20of%20the%20Wiedemann-Franz%20Law&rft.jtitle=Physical%20review.%20B&rft.au=Avery,%20A.%20D.&rft.date=2015-12-08&rft.volume=92&rft.issue=21&rft.artnum=214410&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.214410&rft_dat=%3Cproquest_osti_%3E1793262426%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793262426&rft_id=info:pmid/&rfr_iscdi=true