Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law
We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness < 200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a s...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2015-12, Vol.92 (21), Article 214410 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 21 |
container_start_page | |
container_title | Physical review. B |
container_volume | 92 |
creator | Avery, A. D. Mason, S. J. Bassett, D. Wesenberg, D. Zink, B. L. |
description | We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness < 200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a single film and an accurate probe of the Wiedemann-Franz (WF) law expected to relate the two. Through careful elimination of possible effects of surface scattering of phonons in the supporting membrane, we find excellent agreement with WF in a thin Ni-Fe film over nearly the entire temperature range from 77 to 325 K. All other materials studied here deviate somewhat from the WF prediction of electronic thermal conductivity with a Lorenz number, L, suppressed from the free-electron value by 10% to 20%. For Al and Cu we compare the results to predictions of the theoretical expression for the Lorenz number as a function of T. This comparison indicates two different types of deviation from expected behavior. In the Cu film, a higher than expected L at lower T indicates an additional thermal conduction mechanism, while at higher T lower than expected values suggests an additional inelastic scattering mechanism for electrons. We suggest the additional low-T L indicates a phonon contribution to thermal conductivity and consider increased electron-phonon scattering at grain boundaries or surfaces to explain the high-T reduction in L. |
doi_str_mv | 10.1103/PhysRevB.92.214410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1228418</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1793262426</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-ae9c8988f43739ca2c6bd0c0c79e79d3078bc69e1e1ab2116406d514b04fac293</originalsourceid><addsrcrecordid>eNo1kctOwzAQRSMEElD4AVYWKxZN8ThuEi-h4iVVgFAR7CzXmahGjl1iFwifwFcTCKzGIx0f6c5NkiOgEwCand6vuvCAb-cTwSYMOAe6lezBdEpTlk2ft_s3FWVKgcFush_CC6XABWd7yddihW2jLFGuImhRx9boftXeVRsdzZuJHfE1Uet16z9MoyLajgClqWvI-ver9d2Y3JoxmfkxObPjX9VsQ2pjmzB4P1RjnIrGux9XXCF5Mlhho5xLL1vlPslcvR8kO7WyAQ__5ih5vLxYzK7T-d3Vzexsnmqe5zFVKHQpyrLmWZEJrZjOlxXVVBcCC1FltCiXOhcICGrJAHJO82oKfEl5rTQT2Sg5Hrw-RCODNhH1qs_r-vASGCs5lD10MkB97NcNhigbEzRaqxz6TZBQiIzljLO8R9mA6taH0GIt121_qLaTQOVPO_K_HSmYHNrJvgEMRYRo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1793262426</pqid></control><display><type>article</type><title>Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law</title><source>American Physical Society Journals</source><creator>Avery, A. D. ; Mason, S. J. ; Bassett, D. ; Wesenberg, D. ; Zink, B. L.</creator><creatorcontrib>Avery, A. D. ; Mason, S. J. ; Bassett, D. ; Wesenberg, D. ; Zink, B. L.</creatorcontrib><description>We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness < 200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a single film and an accurate probe of the Wiedemann-Franz (WF) law expected to relate the two. Through careful elimination of possible effects of surface scattering of phonons in the supporting membrane, we find excellent agreement with WF in a thin Ni-Fe film over nearly the entire temperature range from 77 to 325 K. All other materials studied here deviate somewhat from the WF prediction of electronic thermal conductivity with a Lorenz number, L, suppressed from the free-electron value by 10% to 20%. For Al and Cu we compare the results to predictions of the theoretical expression for the Lorenz number as a function of T. This comparison indicates two different types of deviation from expected behavior. In the Cu film, a higher than expected L at lower T indicates an additional thermal conduction mechanism, while at higher T lower than expected values suggests an additional inelastic scattering mechanism for electrons. We suggest the additional low-T L indicates a phonon contribution to thermal conductivity and consider increased electron-phonon scattering at grain boundaries or surfaces to explain the high-T reduction in L.</description><identifier>ISSN: 1098-0121</identifier><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 1550-235X</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.92.214410</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Aluminum ; Copper ; ELECTRICAL CONDUCTIVITY ; Lorenz number ; MICROMACHINING ; Nickel ; Permalloy ; Phonons ; Resistivity ; Thermal conductivity ; THIN FILMS ; WIEDEMANN FRANZ RATIO</subject><ispartof>Physical review. B, 2015-12, Vol.92 (21), Article 214410</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-ae9c8988f43739ca2c6bd0c0c79e79d3078bc69e1e1ab2116406d514b04fac293</citedby><cites>FETCH-LOGICAL-c466t-ae9c8988f43739ca2c6bd0c0c79e79d3078bc69e1e1ab2116406d514b04fac293</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1228418$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Avery, A. D.</creatorcontrib><creatorcontrib>Mason, S. J.</creatorcontrib><creatorcontrib>Bassett, D.</creatorcontrib><creatorcontrib>Wesenberg, D.</creatorcontrib><creatorcontrib>Zink, B. L.</creatorcontrib><title>Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law</title><title>Physical review. B</title><description>We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness < 200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a single film and an accurate probe of the Wiedemann-Franz (WF) law expected to relate the two. Through careful elimination of possible effects of surface scattering of phonons in the supporting membrane, we find excellent agreement with WF in a thin Ni-Fe film over nearly the entire temperature range from 77 to 325 K. All other materials studied here deviate somewhat from the WF prediction of electronic thermal conductivity with a Lorenz number, L, suppressed from the free-electron value by 10% to 20%. For Al and Cu we compare the results to predictions of the theoretical expression for the Lorenz number as a function of T. This comparison indicates two different types of deviation from expected behavior. In the Cu film, a higher than expected L at lower T indicates an additional thermal conduction mechanism, while at higher T lower than expected values suggests an additional inelastic scattering mechanism for electrons. We suggest the additional low-T L indicates a phonon contribution to thermal conductivity and consider increased electron-phonon scattering at grain boundaries or surfaces to explain the high-T reduction in L.</description><subject>Aluminum</subject><subject>Copper</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Lorenz number</subject><subject>MICROMACHINING</subject><subject>Nickel</subject><subject>Permalloy</subject><subject>Phonons</subject><subject>Resistivity</subject><subject>Thermal conductivity</subject><subject>THIN FILMS</subject><subject>WIEDEMANN FRANZ RATIO</subject><issn>1098-0121</issn><issn>2469-9950</issn><issn>1550-235X</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kctOwzAQRSMEElD4AVYWKxZN8ThuEi-h4iVVgFAR7CzXmahGjl1iFwifwFcTCKzGIx0f6c5NkiOgEwCand6vuvCAb-cTwSYMOAe6lezBdEpTlk2ft_s3FWVKgcFush_CC6XABWd7yddihW2jLFGuImhRx9boftXeVRsdzZuJHfE1Uet16z9MoyLajgClqWvI-ver9d2Y3JoxmfkxObPjX9VsQ2pjmzB4P1RjnIrGux9XXCF5Mlhho5xLL1vlPslcvR8kO7WyAQ__5ih5vLxYzK7T-d3Vzexsnmqe5zFVKHQpyrLmWZEJrZjOlxXVVBcCC1FltCiXOhcICGrJAHJO82oKfEl5rTQT2Sg5Hrw-RCODNhH1qs_r-vASGCs5lD10MkB97NcNhigbEzRaqxz6TZBQiIzljLO8R9mA6taH0GIt121_qLaTQOVPO_K_HSmYHNrJvgEMRYRo</recordid><startdate>20151208</startdate><enddate>20151208</enddate><creator>Avery, A. D.</creator><creator>Mason, S. J.</creator><creator>Bassett, D.</creator><creator>Wesenberg, D.</creator><creator>Zink, B. L.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151208</creationdate><title>Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law</title><author>Avery, A. D. ; Mason, S. J. ; Bassett, D. ; Wesenberg, D. ; Zink, B. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-ae9c8988f43739ca2c6bd0c0c79e79d3078bc69e1e1ab2116406d514b04fac293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aluminum</topic><topic>Copper</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Lorenz number</topic><topic>MICROMACHINING</topic><topic>Nickel</topic><topic>Permalloy</topic><topic>Phonons</topic><topic>Resistivity</topic><topic>Thermal conductivity</topic><topic>THIN FILMS</topic><topic>WIEDEMANN FRANZ RATIO</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Avery, A. D.</creatorcontrib><creatorcontrib>Mason, S. J.</creatorcontrib><creatorcontrib>Bassett, D.</creatorcontrib><creatorcontrib>Wesenberg, D.</creatorcontrib><creatorcontrib>Zink, B. L.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Avery, A. D.</au><au>Mason, S. J.</au><au>Bassett, D.</au><au>Wesenberg, D.</au><au>Zink, B. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law</atitle><jtitle>Physical review. B</jtitle><date>2015-12-08</date><risdate>2015</risdate><volume>92</volume><issue>21</issue><artnum>214410</artnum><issn>1098-0121</issn><issn>2469-9950</issn><eissn>1550-235X</eissn><eissn>2469-9969</eissn><abstract>We present measurements of thermal and electrical conductivity of polycrystalline permalloy (Ni-Fe), aluminum, copper, cobalt, and nickel thin films with thickness < 200 nm. A micromachined silicon-nitride membrane thermal-isolation platform allows measurements of both transport properties on a single film and an accurate probe of the Wiedemann-Franz (WF) law expected to relate the two. Through careful elimination of possible effects of surface scattering of phonons in the supporting membrane, we find excellent agreement with WF in a thin Ni-Fe film over nearly the entire temperature range from 77 to 325 K. All other materials studied here deviate somewhat from the WF prediction of electronic thermal conductivity with a Lorenz number, L, suppressed from the free-electron value by 10% to 20%. For Al and Cu we compare the results to predictions of the theoretical expression for the Lorenz number as a function of T. This comparison indicates two different types of deviation from expected behavior. In the Cu film, a higher than expected L at lower T indicates an additional thermal conduction mechanism, while at higher T lower than expected values suggests an additional inelastic scattering mechanism for electrons. We suggest the additional low-T L indicates a phonon contribution to thermal conductivity and consider increased electron-phonon scattering at grain boundaries or surfaces to explain the high-T reduction in L.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.92.214410</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, 2015-12, Vol.92 (21), Article 214410 |
issn | 1098-0121 2469-9950 1550-235X 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1228418 |
source | American Physical Society Journals |
subjects | Aluminum Copper ELECTRICAL CONDUCTIVITY Lorenz number MICROMACHINING Nickel Permalloy Phonons Resistivity Thermal conductivity THIN FILMS WIEDEMANN FRANZ RATIO |
title | Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20and%20electrical%20conductivity%20of%20approximately%20100-nm%20permalloy,%20Ni,%20Co,%20Al,%20and%20Cu%20films%20and%20examination%20of%20the%20Wiedemann-Franz%20Law&rft.jtitle=Physical%20review.%20B&rft.au=Avery,%20A.%20D.&rft.date=2015-12-08&rft.volume=92&rft.issue=21&rft.artnum=214410&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.214410&rft_dat=%3Cproquest_osti_%3E1793262426%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1793262426&rft_id=info:pmid/&rfr_iscdi=true |