Atomic-scale imaging correlation on the deformation and sensing mechanisms of SnO2 nanowires
We demonstrate direct evidence that the strain variation induced by local lattice distortion exists in the surface layers of SnO2 nanowires by coupled scanning transmission electron microscopy and digital image correlation techniques. First-principles calculations suggest that surface reduction and...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2014-12, Vol.105 (24) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 24 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 105 |
creator | Sun, Yong Liu, Jie Blom, Douglas Koley, Goutam Duan, Zhiyao Wang, Guofeng Li, Xiaodong |
description | We demonstrate direct evidence that the strain variation induced by local lattice distortion exists in the surface layers of SnO2 nanowires by coupled scanning transmission electron microscopy and digital image correlation techniques. First-principles calculations suggest that surface reduction and subsurface oxygen vacancies account for such vigorous wavelike strain. Our study revealed that the localized change of surface atomistic configuration was responsible for the observed reduction of elastic modulus and hardness of SnO2 nanowires, as well as the superior sensing properties of SnO2 nanowire network. |
doi_str_mv | 10.1063/1.4904912 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1226616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123829050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-91eee8ab38ac48f67de4b85b8289831378285df578333c3d3dbf00b4c4bdea883</originalsourceid><addsrcrecordid>eNotkMtKAzEUhoMoWKsL3yDoysXUJGcumWUp3qDQhboTQiZzpk3pJDVJEd_elAoHzoWPw89HyC1nM85qeOSzsmVly8UZmXDWNAVwLs_JhDEGRd1W_JJcxbjNayUAJuRrnvxoTRGN3iG1o15bt6bGh4A7nax3NFfaIO1x8GE8nbTraUQXj-iIZqOdjWOkfqDvbiWo087_2IDxmlwMehfx5r9Pyefz08fitViuXt4W82VhhCxT0XJElLoDqU0ph7rpsexk1UkhWwkcmjxU_VA1EgAM9NB3A2NdacquRy0lTMnd6a-PyapobMqhjHcOTVJciLrmdYbuT9A--O8DxqS2_hBczqUEFyBFyyqWqYcTZYKPMeCg9iFbCb-KM3U0rLj6Nwx_N3ts8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123829050</pqid></control><display><type>article</type><title>Atomic-scale imaging correlation on the deformation and sensing mechanisms of SnO2 nanowires</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Sun, Yong ; Liu, Jie ; Blom, Douglas ; Koley, Goutam ; Duan, Zhiyao ; Wang, Guofeng ; Li, Xiaodong</creator><creatorcontrib>Sun, Yong ; Liu, Jie ; Blom, Douglas ; Koley, Goutam ; Duan, Zhiyao ; Wang, Guofeng ; Li, Xiaodong</creatorcontrib><description>We demonstrate direct evidence that the strain variation induced by local lattice distortion exists in the surface layers of SnO2 nanowires by coupled scanning transmission electron microscopy and digital image correlation techniques. First-principles calculations suggest that surface reduction and subsurface oxygen vacancies account for such vigorous wavelike strain. Our study revealed that the localized change of surface atomistic configuration was responsible for the observed reduction of elastic modulus and hardness of SnO2 nanowires, as well as the superior sensing properties of SnO2 nanowire network.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/1.4904912</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Deformation mechanisms ; Digital imaging ; First principles ; Image transmission ; Lattice vacancies ; Modulus of elasticity ; Nanowires ; Reduction ; Scanning electron microscopy ; Scanning transmission electron microscopy ; Surface layers ; Tin dioxide ; Transmission electron microscopy</subject><ispartof>Applied physics letters, 2014-12, Vol.105 (24)</ispartof><rights>2014 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-91eee8ab38ac48f67de4b85b8289831378285df578333c3d3dbf00b4c4bdea883</citedby><cites>FETCH-LOGICAL-c284t-91eee8ab38ac48f67de4b85b8289831378285df578333c3d3dbf00b4c4bdea883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1226616$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Yong</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Blom, Douglas</creatorcontrib><creatorcontrib>Koley, Goutam</creatorcontrib><creatorcontrib>Duan, Zhiyao</creatorcontrib><creatorcontrib>Wang, Guofeng</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><title>Atomic-scale imaging correlation on the deformation and sensing mechanisms of SnO2 nanowires</title><title>Applied physics letters</title><description>We demonstrate direct evidence that the strain variation induced by local lattice distortion exists in the surface layers of SnO2 nanowires by coupled scanning transmission electron microscopy and digital image correlation techniques. First-principles calculations suggest that surface reduction and subsurface oxygen vacancies account for such vigorous wavelike strain. Our study revealed that the localized change of surface atomistic configuration was responsible for the observed reduction of elastic modulus and hardness of SnO2 nanowires, as well as the superior sensing properties of SnO2 nanowire network.</description><subject>Applied physics</subject><subject>Deformation mechanisms</subject><subject>Digital imaging</subject><subject>First principles</subject><subject>Image transmission</subject><subject>Lattice vacancies</subject><subject>Modulus of elasticity</subject><subject>Nanowires</subject><subject>Reduction</subject><subject>Scanning electron microscopy</subject><subject>Scanning transmission electron microscopy</subject><subject>Surface layers</subject><subject>Tin dioxide</subject><subject>Transmission electron microscopy</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNotkMtKAzEUhoMoWKsL3yDoysXUJGcumWUp3qDQhboTQiZzpk3pJDVJEd_elAoHzoWPw89HyC1nM85qeOSzsmVly8UZmXDWNAVwLs_JhDEGRd1W_JJcxbjNayUAJuRrnvxoTRGN3iG1o15bt6bGh4A7nax3NFfaIO1x8GE8nbTraUQXj-iIZqOdjWOkfqDvbiWo087_2IDxmlwMehfx5r9Pyefz08fitViuXt4W82VhhCxT0XJElLoDqU0ph7rpsexk1UkhWwkcmjxU_VA1EgAM9NB3A2NdacquRy0lTMnd6a-PyapobMqhjHcOTVJciLrmdYbuT9A--O8DxqS2_hBczqUEFyBFyyqWqYcTZYKPMeCg9iFbCb-KM3U0rLj6Nwx_N3ts8A</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Sun, Yong</creator><creator>Liu, Jie</creator><creator>Blom, Douglas</creator><creator>Koley, Goutam</creator><creator>Duan, Zhiyao</creator><creator>Wang, Guofeng</creator><creator>Li, Xiaodong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141215</creationdate><title>Atomic-scale imaging correlation on the deformation and sensing mechanisms of SnO2 nanowires</title><author>Sun, Yong ; Liu, Jie ; Blom, Douglas ; Koley, Goutam ; Duan, Zhiyao ; Wang, Guofeng ; Li, Xiaodong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-91eee8ab38ac48f67de4b85b8289831378285df578333c3d3dbf00b4c4bdea883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied physics</topic><topic>Deformation mechanisms</topic><topic>Digital imaging</topic><topic>First principles</topic><topic>Image transmission</topic><topic>Lattice vacancies</topic><topic>Modulus of elasticity</topic><topic>Nanowires</topic><topic>Reduction</topic><topic>Scanning electron microscopy</topic><topic>Scanning transmission electron microscopy</topic><topic>Surface layers</topic><topic>Tin dioxide</topic><topic>Transmission electron microscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yong</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Blom, Douglas</creatorcontrib><creatorcontrib>Koley, Goutam</creatorcontrib><creatorcontrib>Duan, Zhiyao</creatorcontrib><creatorcontrib>Wang, Guofeng</creatorcontrib><creatorcontrib>Li, Xiaodong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yong</au><au>Liu, Jie</au><au>Blom, Douglas</au><au>Koley, Goutam</au><au>Duan, Zhiyao</au><au>Wang, Guofeng</au><au>Li, Xiaodong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic-scale imaging correlation on the deformation and sensing mechanisms of SnO2 nanowires</atitle><jtitle>Applied physics letters</jtitle><date>2014-12-15</date><risdate>2014</risdate><volume>105</volume><issue>24</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>We demonstrate direct evidence that the strain variation induced by local lattice distortion exists in the surface layers of SnO2 nanowires by coupled scanning transmission electron microscopy and digital image correlation techniques. First-principles calculations suggest that surface reduction and subsurface oxygen vacancies account for such vigorous wavelike strain. Our study revealed that the localized change of surface atomistic configuration was responsible for the observed reduction of elastic modulus and hardness of SnO2 nanowires, as well as the superior sensing properties of SnO2 nanowire network.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4904912</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2014-12, Vol.105 (24) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_osti_scitechconnect_1226616 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Deformation mechanisms Digital imaging First principles Image transmission Lattice vacancies Modulus of elasticity Nanowires Reduction Scanning electron microscopy Scanning transmission electron microscopy Surface layers Tin dioxide Transmission electron microscopy |
title | Atomic-scale imaging correlation on the deformation and sensing mechanisms of SnO2 nanowires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A52%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic-scale%20imaging%20correlation%20on%20the%20deformation%20and%20sensing%20mechanisms%20of%20SnO2%20nanowires&rft.jtitle=Applied%20physics%20letters&rft.au=Sun,%20Yong&rft.date=2014-12-15&rft.volume=105&rft.issue=24&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/1.4904912&rft_dat=%3Cproquest_osti_%3E2123829050%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123829050&rft_id=info:pmid/&rfr_iscdi=true |