High-resolution subsurface microscopy of CMOS integrated circuits using radially polarized light
Under high numerical aperture (NA) conditions, a linearly polarized plane wave focuses to a spot that is extended along the E-field vector, but radially polarized light is predicted to form a circular spot whose diameter equals the narrower dimension obtained with linear polarization. This effect pr...
Gespeichert in:
Veröffentlicht in: | Optics letters 2015-12, Vol.40 (23), p.5502-5505 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5505 |
---|---|
container_issue | 23 |
container_start_page | 5502 |
container_title | Optics letters |
container_volume | 40 |
creator | Rutkauskas, M Farrell, C Dorrer, C Marshall, K L Lundquist, T R Vedagarbha, P Reid, D T |
description | Under high numerical aperture (NA) conditions, a linearly polarized plane wave focuses to a spot that is extended along the E-field vector, but radially polarized light is predicted to form a circular spot whose diameter equals the narrower dimension obtained with linear polarization. This effect provides an opportunity for improved resolution in high-NA microscopy, and here we present a performance study of subsurface two-photon optical-beam-induced current solid-immersion-lens microscopy of a complementary metal-oxide semiconductor integrated circuit, showing a resolution improvement by using radially polarized illumination. By comparing images of the same structural features we show that radial polarization achieves a resolution of 126 nm, while linear polarization achieves resolutions of 122 and 165 nm, depending on the E-field orientation. These results are consistent with the theoretically expected behavior and are supported by high-resolution images which show superior feature definition using radial polarization. |
doi_str_mv | 10.1364/OL.40.005502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1226398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1738822173</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-5bd9f0ceec0f1d3c4775c4e22e5cac0a7c24d63ba32acf7e47e2ad3e3a9c19d93</originalsourceid><addsrcrecordid>eNqF0b9vEzEcBXALgWha2DpXFhNDL_i3z2MVAUUKykCZjfO976WuLufU9g3hr-9VKV2Z3vLRG94j5JKzJZdGfdmsl4otGdOaiTdkwbV0jbJOvSULxpVpnHbijJyX8sAYM1bK9-RMGCM0k2ZB_tzG3X2TsaRhqjGNtEzbMuU-ANJ9hJwKpMORpp6ufm5-0ThW3OVQsaMQM0yxFjqVOO5oDl0Mw3CkhzSEHP_OYpir6wfyrg9DwY8veUF-f_t6t7pt1pvvP1Y36wZk62qjt53rGSAC63knQVmrQaEQqCEACxaE6ozcBikC9BaVRRE6iTI44K5z8oJ8OvWmUqMvECvCPaRxRKieC2Gka2f0-YQOOT1OWKrfxwI4DGHENBXPW6O0ldzo_1Mr21aIOWZ6faLPc5WMvT_kuA_56Dnzzx_5zdor5k8fzfzqpXna7rF7xf9OkU9OO42R</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1738822173</pqid></control><display><type>article</type><title>High-resolution subsurface microscopy of CMOS integrated circuits using radially polarized light</title><source>Optica Publishing Group Journals</source><creator>Rutkauskas, M ; Farrell, C ; Dorrer, C ; Marshall, K L ; Lundquist, T R ; Vedagarbha, P ; Reid, D T</creator><creatorcontrib>Rutkauskas, M ; Farrell, C ; Dorrer, C ; Marshall, K L ; Lundquist, T R ; Vedagarbha, P ; Reid, D T</creatorcontrib><description>Under high numerical aperture (NA) conditions, a linearly polarized plane wave focuses to a spot that is extended along the E-field vector, but radially polarized light is predicted to form a circular spot whose diameter equals the narrower dimension obtained with linear polarization. This effect provides an opportunity for improved resolution in high-NA microscopy, and here we present a performance study of subsurface two-photon optical-beam-induced current solid-immersion-lens microscopy of a complementary metal-oxide semiconductor integrated circuit, showing a resolution improvement by using radially polarized illumination. By comparing images of the same structural features we show that radial polarization achieves a resolution of 126 nm, while linear polarization achieves resolutions of 122 and 165 nm, depending on the E-field orientation. These results are consistent with the theoretically expected behavior and are supported by high-resolution images which show superior feature definition using radial polarization.</description><identifier>ISSN: 0146-9592</identifier><identifier>EISSN: 1539-4794</identifier><identifier>DOI: 10.1364/OL.40.005502</identifier><identifier>PMID: 26625036</identifier><language>eng</language><publisher>United States: Optical Society of America</publisher><subject>Linear polarization ; Metal oxide semiconductors ; Microscopy ; Polarization ; Polarized light ; Semiconductors ; Spots</subject><ispartof>Optics letters, 2015-12, Vol.40 (23), p.5502-5505</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-5bd9f0ceec0f1d3c4775c4e22e5cac0a7c24d63ba32acf7e47e2ad3e3a9c19d93</citedby><cites>FETCH-LOGICAL-c389t-5bd9f0ceec0f1d3c4775c4e22e5cac0a7c24d63ba32acf7e47e2ad3e3a9c19d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3244,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26625036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1226398$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rutkauskas, M</creatorcontrib><creatorcontrib>Farrell, C</creatorcontrib><creatorcontrib>Dorrer, C</creatorcontrib><creatorcontrib>Marshall, K L</creatorcontrib><creatorcontrib>Lundquist, T R</creatorcontrib><creatorcontrib>Vedagarbha, P</creatorcontrib><creatorcontrib>Reid, D T</creatorcontrib><title>High-resolution subsurface microscopy of CMOS integrated circuits using radially polarized light</title><title>Optics letters</title><addtitle>Opt Lett</addtitle><description>Under high numerical aperture (NA) conditions, a linearly polarized plane wave focuses to a spot that is extended along the E-field vector, but radially polarized light is predicted to form a circular spot whose diameter equals the narrower dimension obtained with linear polarization. This effect provides an opportunity for improved resolution in high-NA microscopy, and here we present a performance study of subsurface two-photon optical-beam-induced current solid-immersion-lens microscopy of a complementary metal-oxide semiconductor integrated circuit, showing a resolution improvement by using radially polarized illumination. By comparing images of the same structural features we show that radial polarization achieves a resolution of 126 nm, while linear polarization achieves resolutions of 122 and 165 nm, depending on the E-field orientation. These results are consistent with the theoretically expected behavior and are supported by high-resolution images which show superior feature definition using radial polarization.</description><subject>Linear polarization</subject><subject>Metal oxide semiconductors</subject><subject>Microscopy</subject><subject>Polarization</subject><subject>Polarized light</subject><subject>Semiconductors</subject><subject>Spots</subject><issn>0146-9592</issn><issn>1539-4794</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0b9vEzEcBXALgWha2DpXFhNDL_i3z2MVAUUKykCZjfO976WuLufU9g3hr-9VKV2Z3vLRG94j5JKzJZdGfdmsl4otGdOaiTdkwbV0jbJOvSULxpVpnHbijJyX8sAYM1bK9-RMGCM0k2ZB_tzG3X2TsaRhqjGNtEzbMuU-ANJ9hJwKpMORpp6ufm5-0ThW3OVQsaMQM0yxFjqVOO5oDl0Mw3CkhzSEHP_OYpir6wfyrg9DwY8veUF-f_t6t7pt1pvvP1Y36wZk62qjt53rGSAC63knQVmrQaEQqCEACxaE6ozcBikC9BaVRRE6iTI44K5z8oJ8OvWmUqMvECvCPaRxRKieC2Gka2f0-YQOOT1OWKrfxwI4DGHENBXPW6O0ldzo_1Mr21aIOWZ6faLPc5WMvT_kuA_56Dnzzx_5zdor5k8fzfzqpXna7rF7xf9OkU9OO42R</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Rutkauskas, M</creator><creator>Farrell, C</creator><creator>Dorrer, C</creator><creator>Marshall, K L</creator><creator>Lundquist, T R</creator><creator>Vedagarbha, P</creator><creator>Reid, D T</creator><general>Optical Society of America</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151201</creationdate><title>High-resolution subsurface microscopy of CMOS integrated circuits using radially polarized light</title><author>Rutkauskas, M ; Farrell, C ; Dorrer, C ; Marshall, K L ; Lundquist, T R ; Vedagarbha, P ; Reid, D T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-5bd9f0ceec0f1d3c4775c4e22e5cac0a7c24d63ba32acf7e47e2ad3e3a9c19d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Linear polarization</topic><topic>Metal oxide semiconductors</topic><topic>Microscopy</topic><topic>Polarization</topic><topic>Polarized light</topic><topic>Semiconductors</topic><topic>Spots</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rutkauskas, M</creatorcontrib><creatorcontrib>Farrell, C</creatorcontrib><creatorcontrib>Dorrer, C</creatorcontrib><creatorcontrib>Marshall, K L</creatorcontrib><creatorcontrib>Lundquist, T R</creatorcontrib><creatorcontrib>Vedagarbha, P</creatorcontrib><creatorcontrib>Reid, D T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Optics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rutkauskas, M</au><au>Farrell, C</au><au>Dorrer, C</au><au>Marshall, K L</au><au>Lundquist, T R</au><au>Vedagarbha, P</au><au>Reid, D T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-resolution subsurface microscopy of CMOS integrated circuits using radially polarized light</atitle><jtitle>Optics letters</jtitle><addtitle>Opt Lett</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>40</volume><issue>23</issue><spage>5502</spage><epage>5505</epage><pages>5502-5505</pages><issn>0146-9592</issn><eissn>1539-4794</eissn><abstract>Under high numerical aperture (NA) conditions, a linearly polarized plane wave focuses to a spot that is extended along the E-field vector, but radially polarized light is predicted to form a circular spot whose diameter equals the narrower dimension obtained with linear polarization. This effect provides an opportunity for improved resolution in high-NA microscopy, and here we present a performance study of subsurface two-photon optical-beam-induced current solid-immersion-lens microscopy of a complementary metal-oxide semiconductor integrated circuit, showing a resolution improvement by using radially polarized illumination. By comparing images of the same structural features we show that radial polarization achieves a resolution of 126 nm, while linear polarization achieves resolutions of 122 and 165 nm, depending on the E-field orientation. These results are consistent with the theoretically expected behavior and are supported by high-resolution images which show superior feature definition using radial polarization.</abstract><cop>United States</cop><pub>Optical Society of America</pub><pmid>26625036</pmid><doi>10.1364/OL.40.005502</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-9592 |
ispartof | Optics letters, 2015-12, Vol.40 (23), p.5502-5505 |
issn | 0146-9592 1539-4794 |
language | eng |
recordid | cdi_osti_scitechconnect_1226398 |
source | Optica Publishing Group Journals |
subjects | Linear polarization Metal oxide semiconductors Microscopy Polarization Polarized light Semiconductors Spots |
title | High-resolution subsurface microscopy of CMOS integrated circuits using radially polarized light |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A25%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-resolution%20subsurface%20microscopy%20of%20CMOS%20integrated%20circuits%20using%20radially%20polarized%20light&rft.jtitle=Optics%20letters&rft.au=Rutkauskas,%20M&rft.date=2015-12-01&rft.volume=40&rft.issue=23&rft.spage=5502&rft.epage=5505&rft.pages=5502-5505&rft.issn=0146-9592&rft.eissn=1539-4794&rft_id=info:doi/10.1364/OL.40.005502&rft_dat=%3Cproquest_osti_%3E1738822173%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1738822173&rft_id=info:pmid/26625036&rfr_iscdi=true |