Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators
We calculate the energy deposition by very short laser pulses in SiO2 ( alpha -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2015-11, Vol.92 (20), Article 205413 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Physical review. B |
container_volume | 92 |
creator | Sato, S. A. Yabana, K. Shinohara, Y. Otobe, T. Lee, K.-M. Bertsch, G. F. |
description | We calculate the energy deposition by very short laser pulses in SiO2 ( alpha -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation. |
doi_str_mv | 10.1103/PhysRevB.92.205413 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1225815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786187445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-7fb7332422cabc654553ea31dc5eedcfda7c30c110333f290f4b83d3da10e2403</originalsourceid><addsrcrecordid>eNo1kFtLxDAQhYsouK7-AZ-CT750zbWXRxVvsKDICr6FbDqxkW5Sk1Tov7dlVxhm5uE7w5mTZZcErwjB7OatHeM7_N6tarqiWHDCjrIFEQLnlInP42nHdZVjQslpdhbjN8aE15wuMrOxO8gb6ME14BKaWrRpRGZwOlnvVIdSCz6MyBvU2q82ty4dmNj6kPJ-6CKgTkUIyIagGqtmIZrKujh0KvkQz7MToybu4jCX2cfjw-b-OV-_Pr3c365zzYsi5aXZloxRTqlWW10ILgQDxUijBUCjTaNKzbCeX2bM0Bobvq1YwxpFMFCO2TK72t_1MVkZtU2gW-2dA50koVRUREzQ9R7qg_8ZICa5s1FD1ykHfoiSlFVBqpLzGaV7VAcfYwAj-2B3KoySYDnbkP_Jy5rKffLsD4bceuM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786187445</pqid></control><display><type>article</type><title>Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators</title><source>American Physical Society Journals</source><creator>Sato, S. A. ; Yabana, K. ; Shinohara, Y. ; Otobe, T. ; Lee, K.-M. ; Bertsch, G. F.</creator><creatorcontrib>Sato, S. A. ; Yabana, K. ; Shinohara, Y. ; Otobe, T. ; Lee, K.-M. ; Bertsch, G. F.</creatorcontrib><description>We calculate the energy deposition by very short laser pulses in SiO2 ( alpha -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.</description><identifier>ISSN: 1098-0121</identifier><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 1550-235X</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.92.205413</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Ablation ; Ablative materials ; Damage ; Deposition ; Direct power generation ; Lasers ; Mathematical models ; Thresholds</subject><ispartof>Physical review. B, 2015-11, Vol.92 (20), Article 205413</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-7fb7332422cabc654553ea31dc5eedcfda7c30c110333f290f4b83d3da10e2403</citedby><cites>FETCH-LOGICAL-c466t-7fb7332422cabc654553ea31dc5eedcfda7c30c110333f290f4b83d3da10e2403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1225815$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sato, S. A.</creatorcontrib><creatorcontrib>Yabana, K.</creatorcontrib><creatorcontrib>Shinohara, Y.</creatorcontrib><creatorcontrib>Otobe, T.</creatorcontrib><creatorcontrib>Lee, K.-M.</creatorcontrib><creatorcontrib>Bertsch, G. F.</creatorcontrib><title>Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators</title><title>Physical review. B</title><description>We calculate the energy deposition by very short laser pulses in SiO2 ( alpha -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.</description><subject>Ablation</subject><subject>Ablative materials</subject><subject>Damage</subject><subject>Deposition</subject><subject>Direct power generation</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Thresholds</subject><issn>1098-0121</issn><issn>2469-9950</issn><issn>1550-235X</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kFtLxDAQhYsouK7-AZ-CT750zbWXRxVvsKDICr6FbDqxkW5Sk1Tov7dlVxhm5uE7w5mTZZcErwjB7OatHeM7_N6tarqiWHDCjrIFEQLnlInP42nHdZVjQslpdhbjN8aE15wuMrOxO8gb6ME14BKaWrRpRGZwOlnvVIdSCz6MyBvU2q82ty4dmNj6kPJ-6CKgTkUIyIagGqtmIZrKujh0KvkQz7MToybu4jCX2cfjw-b-OV-_Pr3c365zzYsi5aXZloxRTqlWW10ILgQDxUijBUCjTaNKzbCeX2bM0Bobvq1YwxpFMFCO2TK72t_1MVkZtU2gW-2dA50koVRUREzQ9R7qg_8ZICa5s1FD1ykHfoiSlFVBqpLzGaV7VAcfYwAj-2B3KoySYDnbkP_Jy5rKffLsD4bceuM</recordid><startdate>20151112</startdate><enddate>20151112</enddate><creator>Sato, S. A.</creator><creator>Yabana, K.</creator><creator>Shinohara, Y.</creator><creator>Otobe, T.</creator><creator>Lee, K.-M.</creator><creator>Bertsch, G. F.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151112</creationdate><title>Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators</title><author>Sato, S. A. ; Yabana, K. ; Shinohara, Y. ; Otobe, T. ; Lee, K.-M. ; Bertsch, G. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-7fb7332422cabc654553ea31dc5eedcfda7c30c110333f290f4b83d3da10e2403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ablation</topic><topic>Ablative materials</topic><topic>Damage</topic><topic>Deposition</topic><topic>Direct power generation</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, S. A.</creatorcontrib><creatorcontrib>Yabana, K.</creatorcontrib><creatorcontrib>Shinohara, Y.</creatorcontrib><creatorcontrib>Otobe, T.</creatorcontrib><creatorcontrib>Lee, K.-M.</creatorcontrib><creatorcontrib>Bertsch, G. F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, S. A.</au><au>Yabana, K.</au><au>Shinohara, Y.</au><au>Otobe, T.</au><au>Lee, K.-M.</au><au>Bertsch, G. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators</atitle><jtitle>Physical review. B</jtitle><date>2015-11-12</date><risdate>2015</risdate><volume>92</volume><issue>20</issue><artnum>205413</artnum><issn>1098-0121</issn><issn>2469-9950</issn><eissn>1550-235X</eissn><eissn>2469-9969</eissn><abstract>We calculate the energy deposition by very short laser pulses in SiO2 ( alpha -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.92.205413</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, 2015-11, Vol.92 (20), Article 205413 |
issn | 1098-0121 2469-9950 1550-235X 2469-9969 |
language | eng |
recordid | cdi_osti_scitechconnect_1225815 |
source | American Physical Society Journals |
subjects | Ablation Ablative materials Damage Deposition Direct power generation Lasers Mathematical models Thresholds |
title | Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-dependent%20density%20functional%20theory%20of%20high-intensity%20short-pulse%20laser%20irradiation%20on%20insulators&rft.jtitle=Physical%20review.%20B&rft.au=Sato,%20S.%20A.&rft.date=2015-11-12&rft.volume=92&rft.issue=20&rft.artnum=205413&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.205413&rft_dat=%3Cproquest_osti_%3E1786187445%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786187445&rft_id=info:pmid/&rfr_iscdi=true |