Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators

We calculate the energy deposition by very short laser pulses in SiO2 ( alpha -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2015-11, Vol.92 (20), Article 205413
Hauptverfasser: Sato, S. A., Yabana, K., Shinohara, Y., Otobe, T., Lee, K.-M., Bertsch, G. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Physical review. B
container_volume 92
creator Sato, S. A.
Yabana, K.
Shinohara, Y.
Otobe, T.
Lee, K.-M.
Bertsch, G. F.
description We calculate the energy deposition by very short laser pulses in SiO2 ( alpha -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.
doi_str_mv 10.1103/PhysRevB.92.205413
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1225815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786187445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c466t-7fb7332422cabc654553ea31dc5eedcfda7c30c110333f290f4b83d3da10e2403</originalsourceid><addsrcrecordid>eNo1kFtLxDAQhYsouK7-AZ-CT750zbWXRxVvsKDICr6FbDqxkW5Sk1Tov7dlVxhm5uE7w5mTZZcErwjB7OatHeM7_N6tarqiWHDCjrIFEQLnlInP42nHdZVjQslpdhbjN8aE15wuMrOxO8gb6ME14BKaWrRpRGZwOlnvVIdSCz6MyBvU2q82ty4dmNj6kPJ-6CKgTkUIyIagGqtmIZrKujh0KvkQz7MToybu4jCX2cfjw-b-OV-_Pr3c365zzYsi5aXZloxRTqlWW10ILgQDxUijBUCjTaNKzbCeX2bM0Bobvq1YwxpFMFCO2TK72t_1MVkZtU2gW-2dA50koVRUREzQ9R7qg_8ZICa5s1FD1ykHfoiSlFVBqpLzGaV7VAcfYwAj-2B3KoySYDnbkP_Jy5rKffLsD4bceuM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786187445</pqid></control><display><type>article</type><title>Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators</title><source>American Physical Society Journals</source><creator>Sato, S. A. ; Yabana, K. ; Shinohara, Y. ; Otobe, T. ; Lee, K.-M. ; Bertsch, G. F.</creator><creatorcontrib>Sato, S. A. ; Yabana, K. ; Shinohara, Y. ; Otobe, T. ; Lee, K.-M. ; Bertsch, G. F.</creatorcontrib><description>We calculate the energy deposition by very short laser pulses in SiO2 ( alpha -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.</description><identifier>ISSN: 1098-0121</identifier><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 1550-235X</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.92.205413</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Ablation ; Ablative materials ; Damage ; Deposition ; Direct power generation ; Lasers ; Mathematical models ; Thresholds</subject><ispartof>Physical review. B, 2015-11, Vol.92 (20), Article 205413</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c466t-7fb7332422cabc654553ea31dc5eedcfda7c30c110333f290f4b83d3da10e2403</citedby><cites>FETCH-LOGICAL-c466t-7fb7332422cabc654553ea31dc5eedcfda7c30c110333f290f4b83d3da10e2403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2874,2875,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1225815$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sato, S. A.</creatorcontrib><creatorcontrib>Yabana, K.</creatorcontrib><creatorcontrib>Shinohara, Y.</creatorcontrib><creatorcontrib>Otobe, T.</creatorcontrib><creatorcontrib>Lee, K.-M.</creatorcontrib><creatorcontrib>Bertsch, G. F.</creatorcontrib><title>Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators</title><title>Physical review. B</title><description>We calculate the energy deposition by very short laser pulses in SiO2 ( alpha -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.</description><subject>Ablation</subject><subject>Ablative materials</subject><subject>Damage</subject><subject>Deposition</subject><subject>Direct power generation</subject><subject>Lasers</subject><subject>Mathematical models</subject><subject>Thresholds</subject><issn>1098-0121</issn><issn>2469-9950</issn><issn>1550-235X</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kFtLxDAQhYsouK7-AZ-CT750zbWXRxVvsKDICr6FbDqxkW5Sk1Tov7dlVxhm5uE7w5mTZZcErwjB7OatHeM7_N6tarqiWHDCjrIFEQLnlInP42nHdZVjQslpdhbjN8aE15wuMrOxO8gb6ME14BKaWrRpRGZwOlnvVIdSCz6MyBvU2q82ty4dmNj6kPJ-6CKgTkUIyIagGqtmIZrKujh0KvkQz7MToybu4jCX2cfjw-b-OV-_Pr3c365zzYsi5aXZloxRTqlWW10ILgQDxUijBUCjTaNKzbCeX2bM0Bobvq1YwxpFMFCO2TK72t_1MVkZtU2gW-2dA50koVRUREzQ9R7qg_8ZICa5s1FD1ykHfoiSlFVBqpLzGaV7VAcfYwAj-2B3KoySYDnbkP_Jy5rKffLsD4bceuM</recordid><startdate>20151112</startdate><enddate>20151112</enddate><creator>Sato, S. A.</creator><creator>Yabana, K.</creator><creator>Shinohara, Y.</creator><creator>Otobe, T.</creator><creator>Lee, K.-M.</creator><creator>Bertsch, G. F.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20151112</creationdate><title>Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators</title><author>Sato, S. A. ; Yabana, K. ; Shinohara, Y. ; Otobe, T. ; Lee, K.-M. ; Bertsch, G. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c466t-7fb7332422cabc654553ea31dc5eedcfda7c30c110333f290f4b83d3da10e2403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Ablation</topic><topic>Ablative materials</topic><topic>Damage</topic><topic>Deposition</topic><topic>Direct power generation</topic><topic>Lasers</topic><topic>Mathematical models</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, S. A.</creatorcontrib><creatorcontrib>Yabana, K.</creatorcontrib><creatorcontrib>Shinohara, Y.</creatorcontrib><creatorcontrib>Otobe, T.</creatorcontrib><creatorcontrib>Lee, K.-M.</creatorcontrib><creatorcontrib>Bertsch, G. F.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, S. A.</au><au>Yabana, K.</au><au>Shinohara, Y.</au><au>Otobe, T.</au><au>Lee, K.-M.</au><au>Bertsch, G. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators</atitle><jtitle>Physical review. B</jtitle><date>2015-11-12</date><risdate>2015</risdate><volume>92</volume><issue>20</issue><artnum>205413</artnum><issn>1098-0121</issn><issn>2469-9950</issn><eissn>1550-235X</eissn><eissn>2469-9969</eissn><abstract>We calculate the energy deposition by very short laser pulses in SiO2 ( alpha -quartz) with a view to establishing systematics for predicting damage and nanoparticle production. The theoretical framework is time-dependent density functional theory, implemented by the real-time method in a multiscale representation. For the most realistic simulations we employ a meta-GGA Kohn-Sham potential similar to that of Becke and Johnson. We find that the deposited energy in the medium can be accurately modeled as a function of the local electromagnetic pulse fluence. The energy-deposition function can in turn be quite well fitted to the strong-field Keldysh formula for a range of intensities from below the melting threshold to well beyond the ablation threshold. We find reasonable agreement between the damage threshold and the energy required to melt the substrate. Also, the depth of the ablated crater at higher energies is fairly well reproduced assuming that the material ablated with the energy exceeds that required to convert it to an atomic fluid. However, the calculated ablation threshold is higher than experiment, suggesting a nonthermal mechanism for the surface ablation.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.92.205413</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, 2015-11, Vol.92 (20), Article 205413
issn 1098-0121
2469-9950
1550-235X
2469-9969
language eng
recordid cdi_osti_scitechconnect_1225815
source American Physical Society Journals
subjects Ablation
Ablative materials
Damage
Deposition
Direct power generation
Lasers
Mathematical models
Thresholds
title Time-dependent density functional theory of high-intensity short-pulse laser irradiation on insulators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A18%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-dependent%20density%20functional%20theory%20of%20high-intensity%20short-pulse%20laser%20irradiation%20on%20insulators&rft.jtitle=Physical%20review.%20B&rft.au=Sato,%20S.%20A.&rft.date=2015-11-12&rft.volume=92&rft.issue=20&rft.artnum=205413&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.205413&rft_dat=%3Cproquest_osti_%3E1786187445%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786187445&rft_id=info:pmid/&rfr_iscdi=true