Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries

The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2015-11, Vol.137 (45), p.14465-14472
Hauptverfasser: Sevov, Christo S, Brooner, Rachel E. M, Chénard, Etienne, Assary, Rajeev S, Moore, Jeffrey S, Rodríguez-López, Joaquín, Sanford, Melanie S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14472
container_issue 45
container_start_page 14465
container_title Journal of the American Chemical Society
container_volume 137
creator Sevov, Christo S
Brooner, Rachel E. M
Chénard, Etienne
Assary, Rajeev S
Moore, Jeffrey S
Rodríguez-López, Joaquín
Sanford, Melanie S
description The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e −) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e −), and undergoes two reversible 1e – reductions in the presence of LiBF4 to form reduced products that are stable over days in solution.
doi_str_mv 10.1021/jacs.5b09572
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1225406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735330449</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-ae2fa1c6d289d5446d60b5e953de328c82c446f43ab3c1e9551309489da7b8683</originalsourceid><addsrcrecordid>eNptkU1vEzEQhi0EoqFw44wsThy6xd_ZPYbSAlJKJQTiaHm9s6kjxw62F5p_j1cJcOFkefTM4_G8CL2k5JISRt9ujc2XsiedXLJHaEElI42kTD1GC0IIa5at4mfoWc7behWspU_RGVOSCqXUAh2uf0Y_FReDSQf8HrLbBBxHvI6_8G30YCdvEv4ObnNf8F3amOAsXoXoDwXwrSmQnPEZjzHh1X7vnTWzK2MX8Ofq_DFBnDL-AkN8wDe-St-ZMjdBfo6ejLUVXpzOc_Tt5vrr1cdmfffh09Vq3RjRsdIYYKOhVg2s7QYphBoU6SV0kg_AWWtbZmtxFNz03NJal5STTlTYLPtWtfwcvT56Yy5OZ-sK2HsbQwBbNGVMCqIq9OYI7VOsM-eidy5b8N6E-QOaLrnknAjRVfTiiNoUc04w6n1yu7o9TYmeE9FzIvqUSMVfncxTv4PhL_wngn9Pz13bOKVQt_F_128zK5TO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735330449</pqid></control><display><type>article</type><title>Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries</title><source>American Chemical Society Publications</source><creator>Sevov, Christo S ; Brooner, Rachel E. M ; Chénard, Etienne ; Assary, Rajeev S ; Moore, Jeffrey S ; Rodríguez-López, Joaquín ; Sanford, Melanie S</creator><creatorcontrib>Sevov, Christo S ; Brooner, Rachel E. M ; Chénard, Etienne ; Assary, Rajeev S ; Moore, Jeffrey S ; Rodríguez-López, Joaquín ; Sanford, Melanie S ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e −) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e −), and undergoes two reversible 1e – reductions in the presence of LiBF4 to form reduced products that are stable over days in solution.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b09572</identifier><identifier>PMID: 26514666</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrolytes ; ENERGY STORAGE ; Materials ; Organic reactions ; Redox reactions ; Salts</subject><ispartof>Journal of the American Chemical Society, 2015-11, Vol.137 (45), p.14465-14472</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-ae2fa1c6d289d5446d60b5e953de328c82c446f43ab3c1e9551309489da7b8683</citedby><cites>FETCH-LOGICAL-a492t-ae2fa1c6d289d5446d60b5e953de328c82c446f43ab3c1e9551309489da7b8683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b09572$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b09572$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26514666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1225406$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sevov, Christo S</creatorcontrib><creatorcontrib>Brooner, Rachel E. M</creatorcontrib><creatorcontrib>Chénard, Etienne</creatorcontrib><creatorcontrib>Assary, Rajeev S</creatorcontrib><creatorcontrib>Moore, Jeffrey S</creatorcontrib><creatorcontrib>Rodríguez-López, Joaquín</creatorcontrib><creatorcontrib>Sanford, Melanie S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e −) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e −), and undergoes two reversible 1e – reductions in the presence of LiBF4 to form reduced products that are stable over days in solution.</description><subject>Electrolytes</subject><subject>ENERGY STORAGE</subject><subject>Materials</subject><subject>Organic reactions</subject><subject>Redox reactions</subject><subject>Salts</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNptkU1vEzEQhi0EoqFw44wsThy6xd_ZPYbSAlJKJQTiaHm9s6kjxw62F5p_j1cJcOFkefTM4_G8CL2k5JISRt9ujc2XsiedXLJHaEElI42kTD1GC0IIa5at4mfoWc7behWspU_RGVOSCqXUAh2uf0Y_FReDSQf8HrLbBBxHvI6_8G30YCdvEv4ObnNf8F3amOAsXoXoDwXwrSmQnPEZjzHh1X7vnTWzK2MX8Ofq_DFBnDL-AkN8wDe-St-ZMjdBfo6ejLUVXpzOc_Tt5vrr1cdmfffh09Vq3RjRsdIYYKOhVg2s7QYphBoU6SV0kg_AWWtbZmtxFNz03NJal5STTlTYLPtWtfwcvT56Yy5OZ-sK2HsbQwBbNGVMCqIq9OYI7VOsM-eidy5b8N6E-QOaLrnknAjRVfTiiNoUc04w6n1yu7o9TYmeE9FzIvqUSMVfncxTv4PhL_wngn9Pz13bOKVQt_F_128zK5TO</recordid><startdate>20151118</startdate><enddate>20151118</enddate><creator>Sevov, Christo S</creator><creator>Brooner, Rachel E. M</creator><creator>Chénard, Etienne</creator><creator>Assary, Rajeev S</creator><creator>Moore, Jeffrey S</creator><creator>Rodríguez-López, Joaquín</creator><creator>Sanford, Melanie S</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20151118</creationdate><title>Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries</title><author>Sevov, Christo S ; Brooner, Rachel E. M ; Chénard, Etienne ; Assary, Rajeev S ; Moore, Jeffrey S ; Rodríguez-López, Joaquín ; Sanford, Melanie S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-ae2fa1c6d289d5446d60b5e953de328c82c446f43ab3c1e9551309489da7b8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Electrolytes</topic><topic>ENERGY STORAGE</topic><topic>Materials</topic><topic>Organic reactions</topic><topic>Redox reactions</topic><topic>Salts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sevov, Christo S</creatorcontrib><creatorcontrib>Brooner, Rachel E. M</creatorcontrib><creatorcontrib>Chénard, Etienne</creatorcontrib><creatorcontrib>Assary, Rajeev S</creatorcontrib><creatorcontrib>Moore, Jeffrey S</creatorcontrib><creatorcontrib>Rodríguez-López, Joaquín</creatorcontrib><creatorcontrib>Sanford, Melanie S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sevov, Christo S</au><au>Brooner, Rachel E. M</au><au>Chénard, Etienne</au><au>Assary, Rajeev S</au><au>Moore, Jeffrey S</au><au>Rodríguez-López, Joaquín</au><au>Sanford, Melanie S</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-11-18</date><risdate>2015</risdate><volume>137</volume><issue>45</issue><spage>14465</spage><epage>14472</epage><pages>14465-14472</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e −) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e −), and undergoes two reversible 1e – reductions in the presence of LiBF4 to form reduced products that are stable over days in solution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26514666</pmid><doi>10.1021/jacs.5b09572</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2015-11, Vol.137 (45), p.14465-14472
issn 0002-7863
1520-5126
language eng
recordid cdi_osti_scitechconnect_1225406
source American Chemical Society Publications
subjects Electrolytes
ENERGY STORAGE
Materials
Organic reactions
Redox reactions
Salts
title Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Design%20of%20Low%20Molecular%20Weight%20Organic%20Anolyte%20Materials%20for%20Applications%20in%20Nonaqueous%20Redox%20Flow%20Batteries&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Sevov,%20Christo%20S&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-11-18&rft.volume=137&rft.issue=45&rft.spage=14465&rft.epage=14472&rft.pages=14465-14472&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b09572&rft_dat=%3Cproquest_osti_%3E1735330449%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735330449&rft_id=info:pmid/26514666&rfr_iscdi=true