Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries
The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2015-11, Vol.137 (45), p.14465-14472 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14472 |
---|---|
container_issue | 45 |
container_start_page | 14465 |
container_title | Journal of the American Chemical Society |
container_volume | 137 |
creator | Sevov, Christo S Brooner, Rachel E. M Chénard, Etienne Assary, Rajeev S Moore, Jeffrey S Rodríguez-López, Joaquín Sanford, Melanie S |
description | The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e −) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e −), and undergoes two reversible 1e – reductions in the presence of LiBF4 to form reduced products that are stable over days in solution. |
doi_str_mv | 10.1021/jacs.5b09572 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1225406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1735330449</sourcerecordid><originalsourceid>FETCH-LOGICAL-a492t-ae2fa1c6d289d5446d60b5e953de328c82c446f43ab3c1e9551309489da7b8683</originalsourceid><addsrcrecordid>eNptkU1vEzEQhi0EoqFw44wsThy6xd_ZPYbSAlJKJQTiaHm9s6kjxw62F5p_j1cJcOFkefTM4_G8CL2k5JISRt9ujc2XsiedXLJHaEElI42kTD1GC0IIa5at4mfoWc7behWspU_RGVOSCqXUAh2uf0Y_FReDSQf8HrLbBBxHvI6_8G30YCdvEv4ObnNf8F3amOAsXoXoDwXwrSmQnPEZjzHh1X7vnTWzK2MX8Ofq_DFBnDL-AkN8wDe-St-ZMjdBfo6ejLUVXpzOc_Tt5vrr1cdmfffh09Vq3RjRsdIYYKOhVg2s7QYphBoU6SV0kg_AWWtbZmtxFNz03NJal5STTlTYLPtWtfwcvT56Yy5OZ-sK2HsbQwBbNGVMCqIq9OYI7VOsM-eidy5b8N6E-QOaLrnknAjRVfTiiNoUc04w6n1yu7o9TYmeE9FzIvqUSMVfncxTv4PhL_wngn9Pz13bOKVQt_F_128zK5TO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1735330449</pqid></control><display><type>article</type><title>Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries</title><source>American Chemical Society Publications</source><creator>Sevov, Christo S ; Brooner, Rachel E. M ; Chénard, Etienne ; Assary, Rajeev S ; Moore, Jeffrey S ; Rodríguez-López, Joaquín ; Sanford, Melanie S</creator><creatorcontrib>Sevov, Christo S ; Brooner, Rachel E. M ; Chénard, Etienne ; Assary, Rajeev S ; Moore, Jeffrey S ; Rodríguez-López, Joaquín ; Sanford, Melanie S ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e −) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e −), and undergoes two reversible 1e – reductions in the presence of LiBF4 to form reduced products that are stable over days in solution.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.5b09572</identifier><identifier>PMID: 26514666</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Electrolytes ; ENERGY STORAGE ; Materials ; Organic reactions ; Redox reactions ; Salts</subject><ispartof>Journal of the American Chemical Society, 2015-11, Vol.137 (45), p.14465-14472</ispartof><rights>Copyright © 2015 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a492t-ae2fa1c6d289d5446d60b5e953de328c82c446f43ab3c1e9551309489da7b8683</citedby><cites>FETCH-LOGICAL-a492t-ae2fa1c6d289d5446d60b5e953de328c82c446f43ab3c1e9551309489da7b8683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.5b09572$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.5b09572$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26514666$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1225406$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sevov, Christo S</creatorcontrib><creatorcontrib>Brooner, Rachel E. M</creatorcontrib><creatorcontrib>Chénard, Etienne</creatorcontrib><creatorcontrib>Assary, Rajeev S</creatorcontrib><creatorcontrib>Moore, Jeffrey S</creatorcontrib><creatorcontrib>Rodríguez-López, Joaquín</creatorcontrib><creatorcontrib>Sanford, Melanie S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e −) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e −), and undergoes two reversible 1e – reductions in the presence of LiBF4 to form reduced products that are stable over days in solution.</description><subject>Electrolytes</subject><subject>ENERGY STORAGE</subject><subject>Materials</subject><subject>Organic reactions</subject><subject>Redox reactions</subject><subject>Salts</subject><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNptkU1vEzEQhi0EoqFw44wsThy6xd_ZPYbSAlJKJQTiaHm9s6kjxw62F5p_j1cJcOFkefTM4_G8CL2k5JISRt9ujc2XsiedXLJHaEElI42kTD1GC0IIa5at4mfoWc7behWspU_RGVOSCqXUAh2uf0Y_FReDSQf8HrLbBBxHvI6_8G30YCdvEv4ObnNf8F3amOAsXoXoDwXwrSmQnPEZjzHh1X7vnTWzK2MX8Ofq_DFBnDL-AkN8wDe-St-ZMjdBfo6ejLUVXpzOc_Tt5vrr1cdmfffh09Vq3RjRsdIYYKOhVg2s7QYphBoU6SV0kg_AWWtbZmtxFNz03NJal5STTlTYLPtWtfwcvT56Yy5OZ-sK2HsbQwBbNGVMCqIq9OYI7VOsM-eidy5b8N6E-QOaLrnknAjRVfTiiNoUc04w6n1yu7o9TYmeE9FzIvqUSMVfncxTv4PhL_wngn9Pz13bOKVQt_F_128zK5TO</recordid><startdate>20151118</startdate><enddate>20151118</enddate><creator>Sevov, Christo S</creator><creator>Brooner, Rachel E. M</creator><creator>Chénard, Etienne</creator><creator>Assary, Rajeev S</creator><creator>Moore, Jeffrey S</creator><creator>Rodríguez-López, Joaquín</creator><creator>Sanford, Melanie S</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20151118</creationdate><title>Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries</title><author>Sevov, Christo S ; Brooner, Rachel E. M ; Chénard, Etienne ; Assary, Rajeev S ; Moore, Jeffrey S ; Rodríguez-López, Joaquín ; Sanford, Melanie S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a492t-ae2fa1c6d289d5446d60b5e953de328c82c446f43ab3c1e9551309489da7b8683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Electrolytes</topic><topic>ENERGY STORAGE</topic><topic>Materials</topic><topic>Organic reactions</topic><topic>Redox reactions</topic><topic>Salts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sevov, Christo S</creatorcontrib><creatorcontrib>Brooner, Rachel E. M</creatorcontrib><creatorcontrib>Chénard, Etienne</creatorcontrib><creatorcontrib>Assary, Rajeev S</creatorcontrib><creatorcontrib>Moore, Jeffrey S</creatorcontrib><creatorcontrib>Rodríguez-López, Joaquín</creatorcontrib><creatorcontrib>Sanford, Melanie S</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sevov, Christo S</au><au>Brooner, Rachel E. M</au><au>Chénard, Etienne</au><au>Assary, Rajeev S</au><au>Moore, Jeffrey S</au><au>Rodríguez-López, Joaquín</au><au>Sanford, Melanie S</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2015-11-18</date><risdate>2015</risdate><volume>137</volume><issue>45</issue><spage>14465</spage><epage>14472</epage><pages>14465-14472</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The integration of renewable energy sources into the electric grid requires low-cost energy storage systems that mediate the variable and intermittent flux of energy associated with most renewables. Nonaqueous redox-flow batteries have emerged as a promising technology for grid-scale energy storage applications. Because the cost of the system scales with mass, the electroactive materials must have a low equivalent weight (ideally 150 g/(mol·e −) or less), and must function with low molecular weight supporting electrolytes such as LiBF4. However, soluble anolyte materials that undergo reversible redox processes in the presence of Li-ion supports are rare. We report the evolutionary design of a series of pyridine-based anolyte materials that exhibit up to two reversible redox couples at low potentials in the presence of Li-ion supporting electrolytes. A combination of cyclic voltammetry of anolyte candidates and independent synthesis of their corresponding charged-states was performed to rapidly screen for the most promising candidates. Results of this workflow provided evidence for possible decomposition pathways of first-generation materials and guided synthetic modifications to improve the stability of anolyte materials under the targeted conditions. This iterative process led to the identification of a promising anolyte material, N-methyl 4-acetylpyridinium tetrafluoroborate. This compound is soluble in nonaqueous solvents, is prepared in a single synthetic step, has a low equivalent weight of 111 g/(mol·e −), and undergoes two reversible 1e – reductions in the presence of LiBF4 to form reduced products that are stable over days in solution.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26514666</pmid><doi>10.1021/jacs.5b09572</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2015-11, Vol.137 (45), p.14465-14472 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_osti_scitechconnect_1225406 |
source | American Chemical Society Publications |
subjects | Electrolytes ENERGY STORAGE Materials Organic reactions Redox reactions Salts |
title | Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T15%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Design%20of%20Low%20Molecular%20Weight%20Organic%20Anolyte%20Materials%20for%20Applications%20in%20Nonaqueous%20Redox%20Flow%20Batteries&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Sevov,%20Christo%20S&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-11-18&rft.volume=137&rft.issue=45&rft.spage=14465&rft.epage=14472&rft.pages=14465-14472&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.5b09572&rft_dat=%3Cproquest_osti_%3E1735330449%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1735330449&rft_id=info:pmid/26514666&rfr_iscdi=true |