Energetics of Ion Transport in NASICON-Type Electrolytes

Herein we report a study on the energetics of ion transport in NASICON-type solid electrolytes. A sol–gel procedure was used to synthesize NASICON-type lithium-ion conductors with nominal compositions Li1+X Al X Ge2–X (PO4)3 where 0 ≤ X ≤ 0.6. Trends in the conductivity and activation energy, includ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physical chemistry. C 2015-07, Vol.119 (29), p.16432-16442
Hauptverfasser: Francisco, Brian E, Stoldt, Conrad R, M’Peko, Jean-Claude
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16442
container_issue 29
container_start_page 16432
container_title Journal of physical chemistry. C
container_volume 119
creator Francisco, Brian E
Stoldt, Conrad R
M’Peko, Jean-Claude
description Herein we report a study on the energetics of ion transport in NASICON-type solid electrolytes. A sol–gel procedure was used to synthesize NASICON-type lithium-ion conductors with nominal compositions Li1+X Al X Ge2–X (PO4)3 where 0 ≤ X ≤ 0.6. Trends in the conductivity and activation energy, including both enthalpic and entropic contributions, were examined with electrochemical impedance spectroscopy. Physical interpretations of these results are drawn from structural characterizations performed by synchrotron powder X-ray diffraction and Raman spectroscopy. Considering X = 0 → 0.6, we conclude that initial drops in activation energy are driven by a growing Li+ population on M2 sites, while later increases in activation energy are driven by changes in average bottleneck size caused by the Al-for-Ge substitution. Values of the entropy of motion are rationalized physically by considering the changing configurational potential of the mobile Li+ population with changes in X. We conclude that entropic contributions to the free energy of activation amount to ≤22% of the enthalpic contributions at room temperature. These insights suggest that while entropic contributions are not insignificant, more attention should be paid to lowering the activation energy when designing a new NASICON-type conductor.
doi_str_mv 10.1021/acs.jpcc.5b03286
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1225088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>f82036146</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-1539b6319cbac252a0ddb18ce71408f820ea54987eca763da3dd52e992a055bf3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqWwM0bMJPgjTuyxigJUqtqBMFvOxYFUxY5sM-Tfk9KKjelOuuc93T0I3ROcEUzJk4aQ7UeAjLeYUVFcoAWRjKZlzvnlX5-X1-gmhD3GnGHCFkjU1vgPEwcIieuTtbNJ47UNo_MxGWyyXb2tq902babRJPXBQPTuMEUTbtFVrw_B3J3rEr0_1031mm52L-tqtUk1y2VMCWeyLRiR0GqgnGrcdS0RYEqSY9ELio3muRSlAV0WrNOs6zg1Us4k523PlujhtNeFOKgAQzTwCc7a-RRFKOVYiBnCJwi8C8GbXo1--NJ-UgSrox4161FHPeqsZ448niK_E_ft7fzF__gPpa1nnQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Energetics of Ion Transport in NASICON-Type Electrolytes</title><source>ACS Publications</source><creator>Francisco, Brian E ; Stoldt, Conrad R ; M’Peko, Jean-Claude</creator><creatorcontrib>Francisco, Brian E ; Stoldt, Conrad R ; M’Peko, Jean-Claude ; Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><description>Herein we report a study on the energetics of ion transport in NASICON-type solid electrolytes. A sol–gel procedure was used to synthesize NASICON-type lithium-ion conductors with nominal compositions Li1+X Al X Ge2–X (PO4)3 where 0 ≤ X ≤ 0.6. Trends in the conductivity and activation energy, including both enthalpic and entropic contributions, were examined with electrochemical impedance spectroscopy. Physical interpretations of these results are drawn from structural characterizations performed by synchrotron powder X-ray diffraction and Raman spectroscopy. Considering X = 0 → 0.6, we conclude that initial drops in activation energy are driven by a growing Li+ population on M2 sites, while later increases in activation energy are driven by changes in average bottleneck size caused by the Al-for-Ge substitution. Values of the entropy of motion are rationalized physically by considering the changing configurational potential of the mobile Li+ population with changes in X. We conclude that entropic contributions to the free energy of activation amount to ≤22% of the enthalpic contributions at room temperature. These insights suggest that while entropic contributions are not insignificant, more attention should be paid to lowering the activation energy when designing a new NASICON-type conductor.</description><identifier>ISSN: 1932-7447</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/acs.jpcc.5b03286</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>carrier dynamics ; electrical conductivity ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; ions ; materials ; thermodynamic modeling</subject><ispartof>Journal of physical chemistry. C, 2015-07, Vol.119 (29), p.16432-16442</ispartof><rights>Copyright © American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-1539b6319cbac252a0ddb18ce71408f820ea54987eca763da3dd52e992a055bf3</citedby><cites>FETCH-LOGICAL-a349t-1539b6319cbac252a0ddb18ce71408f820ea54987eca763da3dd52e992a055bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.5b03286$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcc.5b03286$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1225088$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Francisco, Brian E</creatorcontrib><creatorcontrib>Stoldt, Conrad R</creatorcontrib><creatorcontrib>M’Peko, Jean-Claude</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><title>Energetics of Ion Transport in NASICON-Type Electrolytes</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Herein we report a study on the energetics of ion transport in NASICON-type solid electrolytes. A sol–gel procedure was used to synthesize NASICON-type lithium-ion conductors with nominal compositions Li1+X Al X Ge2–X (PO4)3 where 0 ≤ X ≤ 0.6. Trends in the conductivity and activation energy, including both enthalpic and entropic contributions, were examined with electrochemical impedance spectroscopy. Physical interpretations of these results are drawn from structural characterizations performed by synchrotron powder X-ray diffraction and Raman spectroscopy. Considering X = 0 → 0.6, we conclude that initial drops in activation energy are driven by a growing Li+ population on M2 sites, while later increases in activation energy are driven by changes in average bottleneck size caused by the Al-for-Ge substitution. Values of the entropy of motion are rationalized physically by considering the changing configurational potential of the mobile Li+ population with changes in X. We conclude that entropic contributions to the free energy of activation amount to ≤22% of the enthalpic contributions at room temperature. These insights suggest that while entropic contributions are not insignificant, more attention should be paid to lowering the activation energy when designing a new NASICON-type conductor.</description><subject>carrier dynamics</subject><subject>electrical conductivity</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>ions</subject><subject>materials</subject><subject>thermodynamic modeling</subject><issn>1932-7447</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqWwM0bMJPgjTuyxigJUqtqBMFvOxYFUxY5sM-Tfk9KKjelOuuc93T0I3ROcEUzJk4aQ7UeAjLeYUVFcoAWRjKZlzvnlX5-X1-gmhD3GnGHCFkjU1vgPEwcIieuTtbNJ47UNo_MxGWyyXb2tq902babRJPXBQPTuMEUTbtFVrw_B3J3rEr0_1031mm52L-tqtUk1y2VMCWeyLRiR0GqgnGrcdS0RYEqSY9ELio3muRSlAV0WrNOs6zg1Us4k523PlujhtNeFOKgAQzTwCc7a-RRFKOVYiBnCJwi8C8GbXo1--NJ-UgSrox4161FHPeqsZ448niK_E_ft7fzF__gPpa1nnQ</recordid><startdate>20150723</startdate><enddate>20150723</enddate><creator>Francisco, Brian E</creator><creator>Stoldt, Conrad R</creator><creator>M’Peko, Jean-Claude</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150723</creationdate><title>Energetics of Ion Transport in NASICON-Type Electrolytes</title><author>Francisco, Brian E ; Stoldt, Conrad R ; M’Peko, Jean-Claude</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-1539b6319cbac252a0ddb18ce71408f820ea54987eca763da3dd52e992a055bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>carrier dynamics</topic><topic>electrical conductivity</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>ions</topic><topic>materials</topic><topic>thermodynamic modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francisco, Brian E</creatorcontrib><creatorcontrib>Stoldt, Conrad R</creatorcontrib><creatorcontrib>M’Peko, Jean-Claude</creatorcontrib><creatorcontrib>Argonne National Laboratory (ANL), Argonne, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francisco, Brian E</au><au>Stoldt, Conrad R</au><au>M’Peko, Jean-Claude</au><aucorp>Argonne National Laboratory (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energetics of Ion Transport in NASICON-Type Electrolytes</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2015-07-23</date><risdate>2015</risdate><volume>119</volume><issue>29</issue><spage>16432</spage><epage>16442</epage><pages>16432-16442</pages><issn>1932-7447</issn><eissn>1932-7455</eissn><abstract>Herein we report a study on the energetics of ion transport in NASICON-type solid electrolytes. A sol–gel procedure was used to synthesize NASICON-type lithium-ion conductors with nominal compositions Li1+X Al X Ge2–X (PO4)3 where 0 ≤ X ≤ 0.6. Trends in the conductivity and activation energy, including both enthalpic and entropic contributions, were examined with electrochemical impedance spectroscopy. Physical interpretations of these results are drawn from structural characterizations performed by synchrotron powder X-ray diffraction and Raman spectroscopy. Considering X = 0 → 0.6, we conclude that initial drops in activation energy are driven by a growing Li+ population on M2 sites, while later increases in activation energy are driven by changes in average bottleneck size caused by the Al-for-Ge substitution. Values of the entropy of motion are rationalized physically by considering the changing configurational potential of the mobile Li+ population with changes in X. We conclude that entropic contributions to the free energy of activation amount to ≤22% of the enthalpic contributions at room temperature. These insights suggest that while entropic contributions are not insignificant, more attention should be paid to lowering the activation energy when designing a new NASICON-type conductor.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/acs.jpcc.5b03286</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2015-07, Vol.119 (29), p.16432-16442
issn 1932-7447
1932-7455
language eng
recordid cdi_osti_scitechconnect_1225088
source ACS Publications
subjects carrier dynamics
electrical conductivity
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
ions
materials
thermodynamic modeling
title Energetics of Ion Transport in NASICON-Type Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T05%3A37%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energetics%20of%20Ion%20Transport%20in%20NASICON-Type%20Electrolytes&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Francisco,%20Brian%20E&rft.aucorp=Argonne%20National%20Laboratory%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2015-07-23&rft.volume=119&rft.issue=29&rft.spage=16432&rft.epage=16442&rft.pages=16432-16442&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/acs.jpcc.5b03286&rft_dat=%3Cacs_osti_%3Ef82036146%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true