Crystal chemistry of birefringent hydrogrossular

Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group I a 3 ¯ d , and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics and chemistry of minerals 2015-06, Vol.42 (6), p.455-474
1. Verfasser: Antao, Sytle M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 474
container_issue 6
container_start_page 455
container_title Physics and chemistry of minerals
container_volume 42
creator Antao, Sytle M.
description Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group I a 3 ¯ d , and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca 2.997 Mg 0.003 ) Σ3 {Al 1.794 Fe 0.196 3+ Cr 0.004 3+ Mn 0.003 3+ Ti 0.002 4+ } Σ2 [(SiO 4 ) 2.851 (O 4 H 4 ) 0.151 ] Σ3 and (2) (Ca 2.993 Mg 0.007 ) Σ3 {Al 1.977 Fe 0.020 3+ Mn 0.003 3+ Cr 0.001 3+ } Σ2 [(SiO 4 ) 2.272 (O 4 H 4 ) 0.730 ] Σ3 . Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ 2 and overall R ( F 2 ) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O–H bond distance (Å) are as follows: 74.4(1), a  = 11.88874(4), and O–H = 0.98(9); the corresponding data for phase 1b are 25.6(1), a  = 11.9280(5), and O–H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1), a  = 12.0591(1), and O–H = 0.90(6); the corresponding data for phase 2b are 48.0(1), a  = 11.9340(2), and O–H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the “Si–O” bond direction, which is written as Z–O, because of the general formula, X 3 Y 2 Z 3 O 12 , for garnet. Phase 1a is near end-member grossular, ideally Ca 3 Al 2 Si 3 O 12 . The deficiencies of the site occupancy factors ( sofs ) for the Si (=Z) site indicate that there are significant [O 4 H 4 ] 4− replacing [SiO 4 ] 4− . The Z–O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z–O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites, if they contain vacancies as indicated by the refinement sofs . Two cubic phases are intergrown in each sample and cause strain that arise from structural mismatch and give rise to strain-induced birefringence in hydrogrossular.
doi_str_mv 10.1007/s00269-015-0736-y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1225061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262078052</sourcerecordid><originalsourceid>FETCH-LOGICAL-a432t-bc65f532dcd717aa5ea72bccb3979e30fcc95e685fdb41aed433a80ce3c56fe13</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gimA1nO7abEVVQkCqxwGw5F7tN1cbFdof8exKCxMR0w7337t5HyC2DBwagHxMAVxUFJilooWh_RmasFJxy4OyczECUnDJdsUtyldIOYFhqOSOwjH3Kdl_g1h3alGNfBF_UbXQ-tt3GdbnY9k0MmxhSOu1tvCYX3u6Tu_mdc_L58vyxfKXr99Xb8mlN7XA10xqV9FLwBhvNtLXSWc1rxFpUunICPGIlnVpI39Qls64phbALQCdQKu-YmJO7KTek3JqEbXa4xdB1DrNhnEtQo-h-Eh1j-Dq5lM0unGI3_GU4Vxz0AiQfVGxS4VhiaGaOsT3Y2BsGZqRnJnpmoGdGeqYfPHzypOMPh_iX_L_pGwPOcuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262078052</pqid></control><display><type>article</type><title>Crystal chemistry of birefringent hydrogrossular</title><source>SpringerLink Journals - AutoHoldings</source><creator>Antao, Sytle M.</creator><creatorcontrib>Antao, Sytle M. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group I a 3 ¯ d , and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca 2.997 Mg 0.003 ) Σ3 {Al 1.794 Fe 0.196 3+ Cr 0.004 3+ Mn 0.003 3+ Ti 0.002 4+ } Σ2 [(SiO 4 ) 2.851 (O 4 H 4 ) 0.151 ] Σ3 and (2) (Ca 2.993 Mg 0.007 ) Σ3 {Al 1.977 Fe 0.020 3+ Mn 0.003 3+ Cr 0.001 3+ } Σ2 [(SiO 4 ) 2.272 (O 4 H 4 ) 0.730 ] Σ3 . Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ 2 and overall R ( F 2 ) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O–H bond distance (Å) are as follows: 74.4(1), a  = 11.88874(4), and O–H = 0.98(9); the corresponding data for phase 1b are 25.6(1), a  = 11.9280(5), and O–H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1), a  = 12.0591(1), and O–H = 0.90(6); the corresponding data for phase 2b are 48.0(1), a  = 11.9340(2), and O–H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the “Si–O” bond direction, which is written as Z–O, because of the general formula, X 3 Y 2 Z 3 O 12 , for garnet. Phase 1a is near end-member grossular, ideally Ca 3 Al 2 Si 3 O 12 . The deficiencies of the site occupancy factors ( sofs ) for the Si (=Z) site indicate that there are significant [O 4 H 4 ] 4− replacing [SiO 4 ] 4− . The Z–O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z–O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites, if they contain vacancies as indicated by the refinement sofs . Two cubic phases are intergrown in each sample and cause strain that arise from structural mismatch and give rise to strain-induced birefringence in hydrogrossular.</description><identifier>ISSN: 0342-1791</identifier><identifier>EISSN: 1432-2021</identifier><identifier>DOI: 10.1007/s00269-015-0736-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Birefringence ; Chemical bonds ; Crystal structure ; Crystallography and Scattering Methods ; Earth and Environmental Science ; Earth Sciences ; Ellipsoids ; Geochemistry ; Hydrogen bonds ; Mineral Resources ; Mineralogy ; Occupancy ; Organic chemistry ; Original Paper ; Phases ; Rietveld method ; Statistical methods ; Unit cell ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>Physics and chemistry of minerals, 2015-06, Vol.42 (6), p.455-474</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Physics and Chemistry of Minerals is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a432t-bc65f532dcd717aa5ea72bccb3979e30fcc95e685fdb41aed433a80ce3c56fe13</citedby><cites>FETCH-LOGICAL-a432t-bc65f532dcd717aa5ea72bccb3979e30fcc95e685fdb41aed433a80ce3c56fe13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00269-015-0736-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00269-015-0736-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1225061$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Antao, Sytle M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Crystal chemistry of birefringent hydrogrossular</title><title>Physics and chemistry of minerals</title><addtitle>Phys Chem Minerals</addtitle><description>Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group I a 3 ¯ d , and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca 2.997 Mg 0.003 ) Σ3 {Al 1.794 Fe 0.196 3+ Cr 0.004 3+ Mn 0.003 3+ Ti 0.002 4+ } Σ2 [(SiO 4 ) 2.851 (O 4 H 4 ) 0.151 ] Σ3 and (2) (Ca 2.993 Mg 0.007 ) Σ3 {Al 1.977 Fe 0.020 3+ Mn 0.003 3+ Cr 0.001 3+ } Σ2 [(SiO 4 ) 2.272 (O 4 H 4 ) 0.730 ] Σ3 . Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ 2 and overall R ( F 2 ) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O–H bond distance (Å) are as follows: 74.4(1), a  = 11.88874(4), and O–H = 0.98(9); the corresponding data for phase 1b are 25.6(1), a  = 11.9280(5), and O–H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1), a  = 12.0591(1), and O–H = 0.90(6); the corresponding data for phase 2b are 48.0(1), a  = 11.9340(2), and O–H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the “Si–O” bond direction, which is written as Z–O, because of the general formula, X 3 Y 2 Z 3 O 12 , for garnet. Phase 1a is near end-member grossular, ideally Ca 3 Al 2 Si 3 O 12 . The deficiencies of the site occupancy factors ( sofs ) for the Si (=Z) site indicate that there are significant [O 4 H 4 ] 4− replacing [SiO 4 ] 4− . The Z–O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z–O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites, if they contain vacancies as indicated by the refinement sofs . Two cubic phases are intergrown in each sample and cause strain that arise from structural mismatch and give rise to strain-induced birefringence in hydrogrossular.</description><subject>Birefringence</subject><subject>Chemical bonds</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ellipsoids</subject><subject>Geochemistry</subject><subject>Hydrogen bonds</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Occupancy</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Phases</subject><subject>Rietveld method</subject><subject>Statistical methods</subject><subject>Unit cell</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>0342-1791</issn><issn>1432-2021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gimA1nO7abEVVQkCqxwGw5F7tN1cbFdof8exKCxMR0w7337t5HyC2DBwagHxMAVxUFJilooWh_RmasFJxy4OyczECUnDJdsUtyldIOYFhqOSOwjH3Kdl_g1h3alGNfBF_UbXQ-tt3GdbnY9k0MmxhSOu1tvCYX3u6Tu_mdc_L58vyxfKXr99Xb8mlN7XA10xqV9FLwBhvNtLXSWc1rxFpUunICPGIlnVpI39Qls64phbALQCdQKu-YmJO7KTek3JqEbXa4xdB1DrNhnEtQo-h-Eh1j-Dq5lM0unGI3_GU4Vxz0AiQfVGxS4VhiaGaOsT3Y2BsGZqRnJnpmoGdGeqYfPHzypOMPh_iX_L_pGwPOcuk</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Antao, Sytle M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope></search><sort><creationdate>20150601</creationdate><title>Crystal chemistry of birefringent hydrogrossular</title><author>Antao, Sytle M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a432t-bc65f532dcd717aa5ea72bccb3979e30fcc95e685fdb41aed433a80ce3c56fe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Birefringence</topic><topic>Chemical bonds</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ellipsoids</topic><topic>Geochemistry</topic><topic>Hydrogen bonds</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Occupancy</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Phases</topic><topic>Rietveld method</topic><topic>Statistical methods</topic><topic>Unit cell</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antao, Sytle M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><jtitle>Physics and chemistry of minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antao, Sytle M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal chemistry of birefringent hydrogrossular</atitle><jtitle>Physics and chemistry of minerals</jtitle><stitle>Phys Chem Minerals</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>42</volume><issue>6</issue><spage>455</spage><epage>474</epage><pages>455-474</pages><issn>0342-1791</issn><eissn>1432-2021</eissn><abstract>Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group I a 3 ¯ d , and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca 2.997 Mg 0.003 ) Σ3 {Al 1.794 Fe 0.196 3+ Cr 0.004 3+ Mn 0.003 3+ Ti 0.002 4+ } Σ2 [(SiO 4 ) 2.851 (O 4 H 4 ) 0.151 ] Σ3 and (2) (Ca 2.993 Mg 0.007 ) Σ3 {Al 1.977 Fe 0.020 3+ Mn 0.003 3+ Cr 0.001 3+ } Σ2 [(SiO 4 ) 2.272 (O 4 H 4 ) 0.730 ] Σ3 . Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ 2 and overall R ( F 2 ) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O–H bond distance (Å) are as follows: 74.4(1), a  = 11.88874(4), and O–H = 0.98(9); the corresponding data for phase 1b are 25.6(1), a  = 11.9280(5), and O–H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1), a  = 12.0591(1), and O–H = 0.90(6); the corresponding data for phase 2b are 48.0(1), a  = 11.9340(2), and O–H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the “Si–O” bond direction, which is written as Z–O, because of the general formula, X 3 Y 2 Z 3 O 12 , for garnet. Phase 1a is near end-member grossular, ideally Ca 3 Al 2 Si 3 O 12 . The deficiencies of the site occupancy factors ( sofs ) for the Si (=Z) site indicate that there are significant [O 4 H 4 ] 4− replacing [SiO 4 ] 4− . The Z–O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z–O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites, if they contain vacancies as indicated by the refinement sofs . Two cubic phases are intergrown in each sample and cause strain that arise from structural mismatch and give rise to strain-induced birefringence in hydrogrossular.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00269-015-0736-y</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0342-1791
ispartof Physics and chemistry of minerals, 2015-06, Vol.42 (6), p.455-474
issn 0342-1791
1432-2021
language eng
recordid cdi_osti_scitechconnect_1225061
source SpringerLink Journals - AutoHoldings
subjects Birefringence
Chemical bonds
Crystal structure
Crystallography and Scattering Methods
Earth and Environmental Science
Earth Sciences
Ellipsoids
Geochemistry
Hydrogen bonds
Mineral Resources
Mineralogy
Occupancy
Organic chemistry
Original Paper
Phases
Rietveld method
Statistical methods
Unit cell
X ray powder diffraction
X-ray diffraction
title Crystal chemistry of birefringent hydrogrossular
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20chemistry%20of%20birefringent%20hydrogrossular&rft.jtitle=Physics%20and%20chemistry%20of%20minerals&rft.au=Antao,%20Sytle%20M.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2015-06-01&rft.volume=42&rft.issue=6&rft.spage=455&rft.epage=474&rft.pages=455-474&rft.issn=0342-1791&rft.eissn=1432-2021&rft_id=info:doi/10.1007/s00269-015-0736-y&rft_dat=%3Cproquest_osti_%3E2262078052%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262078052&rft_id=info:pmid/&rfr_iscdi=true