Crystal chemistry of birefringent hydrogrossular
Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group I a 3 ¯ d , and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD)...
Gespeichert in:
Veröffentlicht in: | Physics and chemistry of minerals 2015-06, Vol.42 (6), p.455-474 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 474 |
---|---|
container_issue | 6 |
container_start_page | 455 |
container_title | Physics and chemistry of minerals |
container_volume | 42 |
creator | Antao, Sytle M. |
description | Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group
I
a
3
¯
d
,
and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca
2.997
Mg
0.003
)
Σ3
{Al
1.794
Fe
0.196
3+
Cr
0.004
3+
Mn
0.003
3+
Ti
0.002
4+
}
Σ2
[(SiO
4
)
2.851
(O
4
H
4
)
0.151
]
Σ3
and (2) (Ca
2.993
Mg
0.007
)
Σ3
{Al
1.977
Fe
0.020
3+
Mn
0.003
3+
Cr
0.001
3+
}
Σ2
[(SiO
4
)
2.272
(O
4
H
4
)
0.730
]
Σ3
. Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ
2
and overall
R
(
F
2
) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O–H bond distance (Å) are as follows: 74.4(1),
a
= 11.88874(4), and O–H = 0.98(9); the corresponding data for phase 1b are 25.6(1),
a
= 11.9280(5), and O–H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1),
a
= 12.0591(1), and O–H = 0.90(6); the corresponding data for phase 2b are 48.0(1),
a
= 11.9340(2), and O–H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the “Si–O” bond direction, which is written as Z–O, because of the general formula, X
3
Y
2
Z
3
O
12
, for garnet. Phase 1a is near end-member grossular, ideally Ca
3
Al
2
Si
3
O
12
. The deficiencies of the site occupancy factors (
sofs
) for the Si (=Z) site indicate that there are significant [O
4
H
4
]
4−
replacing [SiO
4
]
4−
. The Z–O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z–O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites, if they contain vacancies as indicated by the refinement
sofs
. Two cubic phases are intergrown in each sample and cause strain that arise from structural mismatch and give rise to strain-induced birefringence in hydrogrossular. |
doi_str_mv | 10.1007/s00269-015-0736-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1225061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2262078052</sourcerecordid><originalsourceid>FETCH-LOGICAL-a432t-bc65f532dcd717aa5ea72bccb3979e30fcc95e685fdb41aed433a80ce3c56fe13</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gimA1nO7abEVVQkCqxwGw5F7tN1cbFdof8exKCxMR0w7337t5HyC2DBwagHxMAVxUFJilooWh_RmasFJxy4OyczECUnDJdsUtyldIOYFhqOSOwjH3Kdl_g1h3alGNfBF_UbXQ-tt3GdbnY9k0MmxhSOu1tvCYX3u6Tu_mdc_L58vyxfKXr99Xb8mlN7XA10xqV9FLwBhvNtLXSWc1rxFpUunICPGIlnVpI39Qls64phbALQCdQKu-YmJO7KTek3JqEbXa4xdB1DrNhnEtQo-h-Eh1j-Dq5lM0unGI3_GU4Vxz0AiQfVGxS4VhiaGaOsT3Y2BsGZqRnJnpmoGdGeqYfPHzypOMPh_iX_L_pGwPOcuk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2262078052</pqid></control><display><type>article</type><title>Crystal chemistry of birefringent hydrogrossular</title><source>SpringerLink Journals - AutoHoldings</source><creator>Antao, Sytle M.</creator><creatorcontrib>Antao, Sytle M. ; Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><description>Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group
I
a
3
¯
d
,
and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca
2.997
Mg
0.003
)
Σ3
{Al
1.794
Fe
0.196
3+
Cr
0.004
3+
Mn
0.003
3+
Ti
0.002
4+
}
Σ2
[(SiO
4
)
2.851
(O
4
H
4
)
0.151
]
Σ3
and (2) (Ca
2.993
Mg
0.007
)
Σ3
{Al
1.977
Fe
0.020
3+
Mn
0.003
3+
Cr
0.001
3+
}
Σ2
[(SiO
4
)
2.272
(O
4
H
4
)
0.730
]
Σ3
. Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ
2
and overall
R
(
F
2
) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O–H bond distance (Å) are as follows: 74.4(1),
a
= 11.88874(4), and O–H = 0.98(9); the corresponding data for phase 1b are 25.6(1),
a
= 11.9280(5), and O–H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1),
a
= 12.0591(1), and O–H = 0.90(6); the corresponding data for phase 2b are 48.0(1),
a
= 11.9340(2), and O–H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the “Si–O” bond direction, which is written as Z–O, because of the general formula, X
3
Y
2
Z
3
O
12
, for garnet. Phase 1a is near end-member grossular, ideally Ca
3
Al
2
Si
3
O
12
. The deficiencies of the site occupancy factors (
sofs
) for the Si (=Z) site indicate that there are significant [O
4
H
4
]
4−
replacing [SiO
4
]
4−
. The Z–O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z–O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites, if they contain vacancies as indicated by the refinement
sofs
. Two cubic phases are intergrown in each sample and cause strain that arise from structural mismatch and give rise to strain-induced birefringence in hydrogrossular.</description><identifier>ISSN: 0342-1791</identifier><identifier>EISSN: 1432-2021</identifier><identifier>DOI: 10.1007/s00269-015-0736-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Birefringence ; Chemical bonds ; Crystal structure ; Crystallography and Scattering Methods ; Earth and Environmental Science ; Earth Sciences ; Ellipsoids ; Geochemistry ; Hydrogen bonds ; Mineral Resources ; Mineralogy ; Occupancy ; Organic chemistry ; Original Paper ; Phases ; Rietveld method ; Statistical methods ; Unit cell ; X ray powder diffraction ; X-ray diffraction</subject><ispartof>Physics and chemistry of minerals, 2015-06, Vol.42 (6), p.455-474</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Physics and Chemistry of Minerals is a copyright of Springer, (2015). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a432t-bc65f532dcd717aa5ea72bccb3979e30fcc95e685fdb41aed433a80ce3c56fe13</citedby><cites>FETCH-LOGICAL-a432t-bc65f532dcd717aa5ea72bccb3979e30fcc95e685fdb41aed433a80ce3c56fe13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00269-015-0736-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00269-015-0736-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1225061$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Antao, Sytle M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><title>Crystal chemistry of birefringent hydrogrossular</title><title>Physics and chemistry of minerals</title><addtitle>Phys Chem Minerals</addtitle><description>Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group
I
a
3
¯
d
,
and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca
2.997
Mg
0.003
)
Σ3
{Al
1.794
Fe
0.196
3+
Cr
0.004
3+
Mn
0.003
3+
Ti
0.002
4+
}
Σ2
[(SiO
4
)
2.851
(O
4
H
4
)
0.151
]
Σ3
and (2) (Ca
2.993
Mg
0.007
)
Σ3
{Al
1.977
Fe
0.020
3+
Mn
0.003
3+
Cr
0.001
3+
}
Σ2
[(SiO
4
)
2.272
(O
4
H
4
)
0.730
]
Σ3
. Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ
2
and overall
R
(
F
2
) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O–H bond distance (Å) are as follows: 74.4(1),
a
= 11.88874(4), and O–H = 0.98(9); the corresponding data for phase 1b are 25.6(1),
a
= 11.9280(5), and O–H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1),
a
= 12.0591(1), and O–H = 0.90(6); the corresponding data for phase 2b are 48.0(1),
a
= 11.9340(2), and O–H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the “Si–O” bond direction, which is written as Z–O, because of the general formula, X
3
Y
2
Z
3
O
12
, for garnet. Phase 1a is near end-member grossular, ideally Ca
3
Al
2
Si
3
O
12
. The deficiencies of the site occupancy factors (
sofs
) for the Si (=Z) site indicate that there are significant [O
4
H
4
]
4−
replacing [SiO
4
]
4−
. The Z–O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z–O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites, if they contain vacancies as indicated by the refinement
sofs
. Two cubic phases are intergrown in each sample and cause strain that arise from structural mismatch and give rise to strain-induced birefringence in hydrogrossular.</description><subject>Birefringence</subject><subject>Chemical bonds</subject><subject>Crystal structure</subject><subject>Crystallography and Scattering Methods</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ellipsoids</subject><subject>Geochemistry</subject><subject>Hydrogen bonds</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Occupancy</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Phases</subject><subject>Rietveld method</subject><subject>Statistical methods</subject><subject>Unit cell</subject><subject>X ray powder diffraction</subject><subject>X-ray diffraction</subject><issn>0342-1791</issn><issn>1432-2021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDFPwzAQhS0EEqXwA9gimA1nO7abEVVQkCqxwGw5F7tN1cbFdof8exKCxMR0w7337t5HyC2DBwagHxMAVxUFJilooWh_RmasFJxy4OyczECUnDJdsUtyldIOYFhqOSOwjH3Kdl_g1h3alGNfBF_UbXQ-tt3GdbnY9k0MmxhSOu1tvCYX3u6Tu_mdc_L58vyxfKXr99Xb8mlN7XA10xqV9FLwBhvNtLXSWc1rxFpUunICPGIlnVpI39Qls64phbALQCdQKu-YmJO7KTek3JqEbXa4xdB1DrNhnEtQo-h-Eh1j-Dq5lM0unGI3_GU4Vxz0AiQfVGxS4VhiaGaOsT3Y2BsGZqRnJnpmoGdGeqYfPHzypOMPh_iX_L_pGwPOcuk</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Antao, Sytle M.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>OTOTI</scope></search><sort><creationdate>20150601</creationdate><title>Crystal chemistry of birefringent hydrogrossular</title><author>Antao, Sytle M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a432t-bc65f532dcd717aa5ea72bccb3979e30fcc95e685fdb41aed433a80ce3c56fe13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Birefringence</topic><topic>Chemical bonds</topic><topic>Crystal structure</topic><topic>Crystallography and Scattering Methods</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ellipsoids</topic><topic>Geochemistry</topic><topic>Hydrogen bonds</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Occupancy</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Phases</topic><topic>Rietveld method</topic><topic>Statistical methods</topic><topic>Unit cell</topic><topic>X ray powder diffraction</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antao, Sytle M.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>OSTI.GOV</collection><jtitle>Physics and chemistry of minerals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antao, Sytle M.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystal chemistry of birefringent hydrogrossular</atitle><jtitle>Physics and chemistry of minerals</jtitle><stitle>Phys Chem Minerals</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>42</volume><issue>6</issue><spage>455</spage><epage>474</epage><pages>455-474</pages><issn>0342-1791</issn><eissn>1432-2021</eissn><abstract>Crystal structure refinements of two fine-grained, massive, birefringent hydrogarnet samples from South Africa [1. green “jade” and 2. pink “jade”] were carried out with the Rietveld method, cubic space group
I
a
3
¯
d
,
and monochromatic synchrotron high-resolution powder X-ray diffraction (HRPXRD) data. Electron-microprobe analysis (EMPA) gave bulk compositions as follows: (1) (Ca
2.997
Mg
0.003
)
Σ3
{Al
1.794
Fe
0.196
3+
Cr
0.004
3+
Mn
0.003
3+
Ti
0.002
4+
}
Σ2
[(SiO
4
)
2.851
(O
4
H
4
)
0.151
]
Σ3
and (2) (Ca
2.993
Mg
0.007
)
Σ3
{Al
1.977
Fe
0.020
3+
Mn
0.003
3+
Cr
0.001
3+
}
Σ2
[(SiO
4
)
2.272
(O
4
H
4
)
0.730
]
Σ3
. Their crystal structure was modeled well as indicated by the Rietveld refinement statistical indicators where the reduced χ
2
and overall
R
(
F
2
) values are 1.133 and 0.0467, respectively, for sample 1 and 1.308 and 0.0342 for sample 2. Two cubic phases are contained in each sample. For phase 1a in sample 1, the weight fraction (%), unit-cell parameter (Å), and O–H bond distance (Å) are as follows: 74.4(1),
a
= 11.88874(4), and O–H = 0.98(9); the corresponding data for phase 1b are 25.6(1),
a
= 11.9280(5), and O–H = 0.91(9). For phase 2a in sample 2, the corresponding data are 52.0(1),
a
= 12.0591(1), and O–H = 0.90(6); the corresponding data for phase 2b are 48.0(1),
a
= 11.9340(2), and O–H = 0.90(7). The anisotropic displacement ellipsoids for the O atoms show no unusual features and are not elongated along the “Si–O” bond direction, which is written as Z–O, because of the general formula, X
3
Y
2
Z
3
O
12
, for garnet. Phase 1a is near end-member grossular, ideally Ca
3
Al
2
Si
3
O
12
. The deficiencies of the site occupancy factors (
sofs
) for the Si (=Z) site indicate that there are significant [O
4
H
4
]
4−
replacing [SiO
4
]
4−
. The Z–O distance is large in phase 1b, phases 2a, and 2b compared to a typical Z–O distance in anhydrous grossular or phase 1a. The H atoms occur in different environments around the vacant Z site in the two samples, and they may also bond to the O atoms surrounding the X and Y sites, if they contain vacancies as indicated by the refinement
sofs
. Two cubic phases are intergrown in each sample and cause strain that arise from structural mismatch and give rise to strain-induced birefringence in hydrogrossular.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00269-015-0736-y</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0342-1791 |
ispartof | Physics and chemistry of minerals, 2015-06, Vol.42 (6), p.455-474 |
issn | 0342-1791 1432-2021 |
language | eng |
recordid | cdi_osti_scitechconnect_1225061 |
source | SpringerLink Journals - AutoHoldings |
subjects | Birefringence Chemical bonds Crystal structure Crystallography and Scattering Methods Earth and Environmental Science Earth Sciences Ellipsoids Geochemistry Hydrogen bonds Mineral Resources Mineralogy Occupancy Organic chemistry Original Paper Phases Rietveld method Statistical methods Unit cell X ray powder diffraction X-ray diffraction |
title | Crystal chemistry of birefringent hydrogrossular |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystal%20chemistry%20of%20birefringent%20hydrogrossular&rft.jtitle=Physics%20and%20chemistry%20of%20minerals&rft.au=Antao,%20Sytle%20M.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States).%20Advanced%20Photon%20Source%20(APS)&rft.date=2015-06-01&rft.volume=42&rft.issue=6&rft.spage=455&rft.epage=474&rft.pages=455-474&rft.issn=0342-1791&rft.eissn=1432-2021&rft_id=info:doi/10.1007/s00269-015-0736-y&rft_dat=%3Cproquest_osti_%3E2262078052%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2262078052&rft_id=info:pmid/&rfr_iscdi=true |