Blending Cr2O3 into a NiO-Ni Electrocatalyst for Sustained Water Splitting

The rising H2 economy demands active and durable electrocatalysts based on low‐cost, earth‐abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over‐coated by a Cr2O3‐blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase materia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2015-10, Vol.54 (41), p.11989-11993
Hauptverfasser: Gong, Ming, Zhou, Wu, Kenney, Michael James, Kapusta, Rich, Cowley, Sam, Wu, Yingpeng, Lu, Bingan, Lin, Meng-Chang, Wang, Di-Yan, Yang, Jiang, Hwang, Bing-Joe, Dai, Hongjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11993
container_issue 41
container_start_page 11989
container_title Angewandte Chemie (International ed.)
container_volume 54
creator Gong, Ming
Zhou, Wu
Kenney, Michael James
Kapusta, Rich
Cowley, Sam
Wu, Yingpeng
Lu, Bingan
Lin, Meng-Chang
Wang, Di-Yan
Yang, Jiang
Hwang, Bing-Joe
Dai, Hongjie
description The rising H2 economy demands active and durable electrocatalysts based on low‐cost, earth‐abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over‐coated by a Cr2O3‐blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen‐evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen‐evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm−2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. The non‐precious metal catalysts afford a high efficiency of about 15 % for light‐driven water splitting using GaAs solar cells. A triphase electrocatalyst composed of a Cr2O3‐blended NiO coating on Ni nanocores (CrNN catalyst) synthesized on metal‐foam substrates showed superior activity and stability for the hydrogen‐evolution reaction in basic solutions. Using the CrNN catalyst, sustained electrolysis of water was achieved at a voltage lower than 1.5 V for at least 500 hours.
doi_str_mv 10.1002/anie.201504815
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1224748</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3820954231</sourcerecordid><originalsourceid>FETCH-LOGICAL-g4315-e18bb2ac572bd43d3fc4527b79e77f9d25b02ceb10b74e3a262c5ade53b552453</originalsourceid><addsrcrecordid>eNpdkc1PGzEQxS3UCijlyrFawYXLUntsx5sjXYUv0Y3UFiFxsWzvhBo23nTtVZv_vo5Cc-jJfvLvPc34EXLC6AWjFD6b4PECKJNUVEzukUMmgZVcKf4u3wXnpaokOyAfYnzJfFXRyT45gAmnChg_JHdfOgytD89FPcCcFz6kvjBF4-dl44tZhy4NvTPJdOuYikU_FN_HmIwP2BaPJmHWq86nlBM-kvcL00U8fjuPyMPV7Ed9U97Pr2_ry_vyWXAmS2SVtWCcVGBbwVu-cEKCsmqKSi2mLUhLwaFl1CqB3MAEnDQtSm6lBCH5ETnd5vYxeR2dT-h-uj6EPKtmAEKJKkPnW2g19L9GjEkvfXTYdSZgP0bNFKs4TKlkGT37D33pxyHkFTaUAlUB3wR-eqNGu8RWrwa_NMNa__vKDEy3wG_f4Xr3zqjeFKU3ReldUfqyuZ3tVPaWW6-PCf_svGZ41RPFldSPzbWu6de6YU9X-hv_Cy24kt4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1717278238</pqid></control><display><type>article</type><title>Blending Cr2O3 into a NiO-Ni Electrocatalyst for Sustained Water Splitting</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gong, Ming ; Zhou, Wu ; Kenney, Michael James ; Kapusta, Rich ; Cowley, Sam ; Wu, Yingpeng ; Lu, Bingan ; Lin, Meng-Chang ; Wang, Di-Yan ; Yang, Jiang ; Hwang, Bing-Joe ; Dai, Hongjie</creator><creatorcontrib>Gong, Ming ; Zhou, Wu ; Kenney, Michael James ; Kapusta, Rich ; Cowley, Sam ; Wu, Yingpeng ; Lu, Bingan ; Lin, Meng-Chang ; Wang, Di-Yan ; Yang, Jiang ; Hwang, Bing-Joe ; Dai, Hongjie ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>The rising H2 economy demands active and durable electrocatalysts based on low‐cost, earth‐abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over‐coated by a Cr2O3‐blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen‐evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen‐evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm−2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. The non‐precious metal catalysts afford a high efficiency of about 15 % for light‐driven water splitting using GaAs solar cells. A triphase electrocatalyst composed of a Cr2O3‐blended NiO coating on Ni nanocores (CrNN catalyst) synthesized on metal‐foam substrates showed superior activity and stability for the hydrogen‐evolution reaction in basic solutions. Using the CrNN catalyst, sustained electrolysis of water was achieved at a voltage lower than 1.5 V for at least 500 hours.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201504815</identifier><identifier>PMID: 26307213</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>08 HYDROGEN ; chromium oxide ; electrocatalysts ; hydrogen-evolution reaction ; sustainable chemistry ; water splitting</subject><ispartof>Angewandte Chemie (International ed.), 2015-10, Vol.54 (41), p.11989-11993</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201504815$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201504815$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26307213$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1224748$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gong, Ming</creatorcontrib><creatorcontrib>Zhou, Wu</creatorcontrib><creatorcontrib>Kenney, Michael James</creatorcontrib><creatorcontrib>Kapusta, Rich</creatorcontrib><creatorcontrib>Cowley, Sam</creatorcontrib><creatorcontrib>Wu, Yingpeng</creatorcontrib><creatorcontrib>Lu, Bingan</creatorcontrib><creatorcontrib>Lin, Meng-Chang</creatorcontrib><creatorcontrib>Wang, Di-Yan</creatorcontrib><creatorcontrib>Yang, Jiang</creatorcontrib><creatorcontrib>Hwang, Bing-Joe</creatorcontrib><creatorcontrib>Dai, Hongjie</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Blending Cr2O3 into a NiO-Ni Electrocatalyst for Sustained Water Splitting</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>The rising H2 economy demands active and durable electrocatalysts based on low‐cost, earth‐abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over‐coated by a Cr2O3‐blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen‐evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen‐evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm−2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. The non‐precious metal catalysts afford a high efficiency of about 15 % for light‐driven water splitting using GaAs solar cells. A triphase electrocatalyst composed of a Cr2O3‐blended NiO coating on Ni nanocores (CrNN catalyst) synthesized on metal‐foam substrates showed superior activity and stability for the hydrogen‐evolution reaction in basic solutions. Using the CrNN catalyst, sustained electrolysis of water was achieved at a voltage lower than 1.5 V for at least 500 hours.</description><subject>08 HYDROGEN</subject><subject>chromium oxide</subject><subject>electrocatalysts</subject><subject>hydrogen-evolution reaction</subject><subject>sustainable chemistry</subject><subject>water splitting</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkc1PGzEQxS3UCijlyrFawYXLUntsx5sjXYUv0Y3UFiFxsWzvhBo23nTtVZv_vo5Cc-jJfvLvPc34EXLC6AWjFD6b4PECKJNUVEzukUMmgZVcKf4u3wXnpaokOyAfYnzJfFXRyT45gAmnChg_JHdfOgytD89FPcCcFz6kvjBF4-dl44tZhy4NvTPJdOuYikU_FN_HmIwP2BaPJmHWq86nlBM-kvcL00U8fjuPyMPV7Ed9U97Pr2_ry_vyWXAmS2SVtWCcVGBbwVu-cEKCsmqKSi2mLUhLwaFl1CqB3MAEnDQtSm6lBCH5ETnd5vYxeR2dT-h-uj6EPKtmAEKJKkPnW2g19L9GjEkvfXTYdSZgP0bNFKs4TKlkGT37D33pxyHkFTaUAlUB3wR-eqNGu8RWrwa_NMNa__vKDEy3wG_f4Xr3zqjeFKU3ReldUfqyuZ3tVPaWW6-PCf_svGZ41RPFldSPzbWu6de6YU9X-hv_Cy24kt4</recordid><startdate>20151005</startdate><enddate>20151005</enddate><creator>Gong, Ming</creator><creator>Zhou, Wu</creator><creator>Kenney, Michael James</creator><creator>Kapusta, Rich</creator><creator>Cowley, Sam</creator><creator>Wu, Yingpeng</creator><creator>Lu, Bingan</creator><creator>Lin, Meng-Chang</creator><creator>Wang, Di-Yan</creator><creator>Yang, Jiang</creator><creator>Hwang, Bing-Joe</creator><creator>Dai, Hongjie</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>NPM</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20151005</creationdate><title>Blending Cr2O3 into a NiO-Ni Electrocatalyst for Sustained Water Splitting</title><author>Gong, Ming ; Zhou, Wu ; Kenney, Michael James ; Kapusta, Rich ; Cowley, Sam ; Wu, Yingpeng ; Lu, Bingan ; Lin, Meng-Chang ; Wang, Di-Yan ; Yang, Jiang ; Hwang, Bing-Joe ; Dai, Hongjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g4315-e18bb2ac572bd43d3fc4527b79e77f9d25b02ceb10b74e3a262c5ade53b552453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>08 HYDROGEN</topic><topic>chromium oxide</topic><topic>electrocatalysts</topic><topic>hydrogen-evolution reaction</topic><topic>sustainable chemistry</topic><topic>water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Ming</creatorcontrib><creatorcontrib>Zhou, Wu</creatorcontrib><creatorcontrib>Kenney, Michael James</creatorcontrib><creatorcontrib>Kapusta, Rich</creatorcontrib><creatorcontrib>Cowley, Sam</creatorcontrib><creatorcontrib>Wu, Yingpeng</creatorcontrib><creatorcontrib>Lu, Bingan</creatorcontrib><creatorcontrib>Lin, Meng-Chang</creatorcontrib><creatorcontrib>Wang, Di-Yan</creatorcontrib><creatorcontrib>Yang, Jiang</creatorcontrib><creatorcontrib>Hwang, Bing-Joe</creatorcontrib><creatorcontrib>Dai, Hongjie</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Ming</au><au>Zhou, Wu</au><au>Kenney, Michael James</au><au>Kapusta, Rich</au><au>Cowley, Sam</au><au>Wu, Yingpeng</au><au>Lu, Bingan</au><au>Lin, Meng-Chang</au><au>Wang, Di-Yan</au><au>Yang, Jiang</au><au>Hwang, Bing-Joe</au><au>Dai, Hongjie</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blending Cr2O3 into a NiO-Ni Electrocatalyst for Sustained Water Splitting</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2015-10-05</date><risdate>2015</risdate><volume>54</volume><issue>41</issue><spage>11989</spage><epage>11993</epage><pages>11989-11993</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>The rising H2 economy demands active and durable electrocatalysts based on low‐cost, earth‐abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over‐coated by a Cr2O3‐blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr2O3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen‐evolution reaction in basic solutions. The chemically stable Cr2O3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen‐evolution catalyst. The highly active and stable electrocatalyst enables an alkaline electrolyzer operating at 20 mA cm−2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. The non‐precious metal catalysts afford a high efficiency of about 15 % for light‐driven water splitting using GaAs solar cells. A triphase electrocatalyst composed of a Cr2O3‐blended NiO coating on Ni nanocores (CrNN catalyst) synthesized on metal‐foam substrates showed superior activity and stability for the hydrogen‐evolution reaction in basic solutions. Using the CrNN catalyst, sustained electrolysis of water was achieved at a voltage lower than 1.5 V for at least 500 hours.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>26307213</pmid><doi>10.1002/anie.201504815</doi><tpages>5</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2015-10, Vol.54 (41), p.11989-11993
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1224748
source Wiley Online Library Journals Frontfile Complete
subjects 08 HYDROGEN
chromium oxide
electrocatalysts
hydrogen-evolution reaction
sustainable chemistry
water splitting
title Blending Cr2O3 into a NiO-Ni Electrocatalyst for Sustained Water Splitting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T20%3A47%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blending%20Cr2O3%20into%20a%20NiO-Ni%20Electrocatalyst%20for%20Sustained%20Water%20Splitting&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Gong,%20Ming&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-10-05&rft.volume=54&rft.issue=41&rft.spage=11989&rft.epage=11993&rft.pages=11989-11993&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201504815&rft_dat=%3Cproquest_osti_%3E3820954231%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1717278238&rft_id=info:pmid/26307213&rfr_iscdi=true