Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America

This study examines future changes of landfalling atmospheric rivers (ARs) over western North America using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The result reveals a strikingly large increase of AR days by the end of the 21st century in the RCP8.5 scenario, with fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2015-09, Vol.42 (17), p.7179-7186
Hauptverfasser: Gao, Yang, Lu, Jian, Leung, L. Ruby, Yang, Qing, Hagos, Samson, Qian, Yun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7186
container_issue 17
container_start_page 7179
container_title Geophysical research letters
container_volume 42
creator Gao, Yang
Lu, Jian
Leung, L. Ruby
Yang, Qing
Hagos, Samson
Qian, Yun
description This study examines future changes of landfalling atmospheric rivers (ARs) over western North America using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The result reveals a strikingly large increase of AR days by the end of the 21st century in the RCP8.5 scenario, with fractional increases between 50% and 600%, depending on the seasons and landfall locations. These increases are predominantly controlled by the super‐Clausius‐Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture in the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be linked to the robust poleward shift of the subtropical jet in the North Pacific basin. Key Points Atmospheric river events increase in the future Increase in moisture contributes largely to AR changes Dynamical effects counter the thermodynamical changes
doi_str_mv 10.1002/2015GL065435
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1224503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1762075180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6118-720598477e3e7f5a6ae94de6f416d733c3bba28b81280eec531e524ec81eb21b3</originalsourceid><addsrcrecordid>eNqN0c1u1DAQAOAIgcRSeuMBLLhwIDC249g5lgJbpKX8CERvluOddF0Se2snbfft61VQVfWAuNij0TejGU1RvKDwlgKwdwyoWK6gFhUXj4oFbaqqVADycbEAaHLMZP20eJbSBQBw4HRR3HzYeTM4a3pi_JqMG4xDWN_lcjz1ZnTBJxI86aZxikjsxvhzzJmO9LmqM33v_Dkx4xDSNndwlkR3hTGL_JJrTCNGT05DHDfkaNgD87x4kusSHv79D4pfnz7-PD4pV1-Xn4-PVqWtKVWlZCAaVUmJHGUnTG2wqdZYdxWt15Jzy9vWMNUqyhQgWsEpClahVRRbRlt-ULyc-4Y0Op2sG9FubPAe7agpY5UAntHrGW1juJzyuHpwyWKft8MwJU1lzUAKquA_KGeKQiNUpq8e0IswRZ-3zYoqLlgj66zezMrGkFLETm-jG0zcaQp6f1Z9_6yZs5lfux53_7R6-WMlOFf7Scq5yOVL3NwVmfhH15JLoX-fLvV7-eX7tzN-piW_Be04sqU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718352976</pqid></control><display><type>article</type><title>Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America</title><source>Wiley-Blackwell Journals</source><source>Wiley-Blackwell Open Access Backfiles (Open Access)</source><source>Wiley-Blackwell AGU Digital Archive</source><source>EZB Electronic Journals Library</source><creator>Gao, Yang ; Lu, Jian ; Leung, L. Ruby ; Yang, Qing ; Hagos, Samson ; Qian, Yun</creator><creatorcontrib>Gao, Yang ; Lu, Jian ; Leung, L. Ruby ; Yang, Qing ; Hagos, Samson ; Qian, Yun ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>This study examines future changes of landfalling atmospheric rivers (ARs) over western North America using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The result reveals a strikingly large increase of AR days by the end of the 21st century in the RCP8.5 scenario, with fractional increases between 50% and 600%, depending on the seasons and landfall locations. These increases are predominantly controlled by the super‐Clausius‐Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture in the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be linked to the robust poleward shift of the subtropical jet in the North Pacific basin. Key Points Atmospheric river events increase in the future Increase in moisture contributes largely to AR changes Dynamical effects counter the thermodynamical changes</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2015GL065435</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Americas ; atmospheric rivers ; Atmospheric water ; Atmospherics ; Basins ; climate change ; Constraining ; dynamical effects ; ENVIRONMENTAL SCIENCES ; increased moisture ; Meteorology ; Modulation ; Moisture ; Rivers ; thermodynamic effects ; Water vapor</subject><ispartof>Geophysical research letters, 2015-09, Vol.42 (17), p.7179-7186</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6118-720598477e3e7f5a6ae94de6f416d733c3bba28b81280eec531e524ec81eb21b3</citedby><cites>FETCH-LOGICAL-c6118-720598477e3e7f5a6ae94de6f416d733c3bba28b81280eec531e524ec81eb21b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2015GL065435$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2015GL065435$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1224503$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Leung, L. Ruby</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Hagos, Samson</creatorcontrib><creatorcontrib>Qian, Yun</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>This study examines future changes of landfalling atmospheric rivers (ARs) over western North America using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The result reveals a strikingly large increase of AR days by the end of the 21st century in the RCP8.5 scenario, with fractional increases between 50% and 600%, depending on the seasons and landfall locations. These increases are predominantly controlled by the super‐Clausius‐Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture in the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be linked to the robust poleward shift of the subtropical jet in the North Pacific basin. Key Points Atmospheric river events increase in the future Increase in moisture contributes largely to AR changes Dynamical effects counter the thermodynamical changes</description><subject>Americas</subject><subject>atmospheric rivers</subject><subject>Atmospheric water</subject><subject>Atmospherics</subject><subject>Basins</subject><subject>climate change</subject><subject>Constraining</subject><subject>dynamical effects</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>increased moisture</subject><subject>Meteorology</subject><subject>Modulation</subject><subject>Moisture</subject><subject>Rivers</subject><subject>thermodynamic effects</subject><subject>Water vapor</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0c1u1DAQAOAIgcRSeuMBLLhwIDC249g5lgJbpKX8CERvluOddF0Se2snbfft61VQVfWAuNij0TejGU1RvKDwlgKwdwyoWK6gFhUXj4oFbaqqVADycbEAaHLMZP20eJbSBQBw4HRR3HzYeTM4a3pi_JqMG4xDWN_lcjz1ZnTBJxI86aZxikjsxvhzzJmO9LmqM33v_Dkx4xDSNndwlkR3hTGL_JJrTCNGT05DHDfkaNgD87x4kusSHv79D4pfnz7-PD4pV1-Xn4-PVqWtKVWlZCAaVUmJHGUnTG2wqdZYdxWt15Jzy9vWMNUqyhQgWsEpClahVRRbRlt-ULyc-4Y0Op2sG9FubPAe7agpY5UAntHrGW1juJzyuHpwyWKft8MwJU1lzUAKquA_KGeKQiNUpq8e0IswRZ-3zYoqLlgj66zezMrGkFLETm-jG0zcaQp6f1Z9_6yZs5lfux53_7R6-WMlOFf7Scq5yOVL3NwVmfhH15JLoX-fLvV7-eX7tzN-piW_Be04sqU</recordid><startdate>20150916</startdate><enddate>20150916</enddate><creator>Gao, Yang</creator><creator>Lu, Jian</creator><creator>Leung, L. Ruby</creator><creator>Yang, Qing</creator><creator>Hagos, Samson</creator><creator>Qian, Yun</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7UA</scope><scope>C1K</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150916</creationdate><title>Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America</title><author>Gao, Yang ; Lu, Jian ; Leung, L. Ruby ; Yang, Qing ; Hagos, Samson ; Qian, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6118-720598477e3e7f5a6ae94de6f416d733c3bba28b81280eec531e524ec81eb21b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Americas</topic><topic>atmospheric rivers</topic><topic>Atmospheric water</topic><topic>Atmospherics</topic><topic>Basins</topic><topic>climate change</topic><topic>Constraining</topic><topic>dynamical effects</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>increased moisture</topic><topic>Meteorology</topic><topic>Modulation</topic><topic>Moisture</topic><topic>Rivers</topic><topic>thermodynamic effects</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yang</creatorcontrib><creatorcontrib>Lu, Jian</creatorcontrib><creatorcontrib>Leung, L. Ruby</creatorcontrib><creatorcontrib>Yang, Qing</creatorcontrib><creatorcontrib>Hagos, Samson</creatorcontrib><creatorcontrib>Qian, Yun</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yang</au><au>Lu, Jian</au><au>Leung, L. Ruby</au><au>Yang, Qing</au><au>Hagos, Samson</au><au>Qian, Yun</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2015-09-16</date><risdate>2015</risdate><volume>42</volume><issue>17</issue><spage>7179</spage><epage>7186</epage><pages>7179-7186</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>This study examines future changes of landfalling atmospheric rivers (ARs) over western North America using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5). The result reveals a strikingly large increase of AR days by the end of the 21st century in the RCP8.5 scenario, with fractional increases between 50% and 600%, depending on the seasons and landfall locations. These increases are predominantly controlled by the super‐Clausius‐Clapeyron rate of increase of atmospheric water vapor with warming, while changes of winds that transport moisture in the ARs, or dynamical effect, mostly counter the thermodynamical effect of increasing water vapor, limiting the increase of AR events in the future. The consistent negative effect of wind changes on AR days during spring and fall can be linked to the robust poleward shift of the subtropical jet in the North Pacific basin. Key Points Atmospheric river events increase in the future Increase in moisture contributes largely to AR changes Dynamical effects counter the thermodynamical changes</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2015GL065435</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2015-09, Vol.42 (17), p.7179-7186
issn 0094-8276
1944-8007
language eng
recordid cdi_osti_scitechconnect_1224503
source Wiley-Blackwell Journals; Wiley-Blackwell Open Access Backfiles (Open Access); Wiley-Blackwell AGU Digital Archive; EZB Electronic Journals Library
subjects Americas
atmospheric rivers
Atmospheric water
Atmospherics
Basins
climate change
Constraining
dynamical effects
ENVIRONMENTAL SCIENCES
increased moisture
Meteorology
Modulation
Moisture
Rivers
thermodynamic effects
Water vapor
title Dynamical and thermodynamical modulations on future changes of landfalling atmospheric rivers over western North America
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A31%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamical%20and%20thermodynamical%20modulations%20on%20future%20changes%20of%20landfalling%20atmospheric%20rivers%20over%20western%20North%20America&rft.jtitle=Geophysical%20research%20letters&rft.au=Gao,%20Yang&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2015-09-16&rft.volume=42&rft.issue=17&rft.spage=7179&rft.epage=7186&rft.pages=7179-7186&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2015GL065435&rft_dat=%3Cproquest_osti_%3E1762075180%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718352976&rft_id=info:pmid/&rfr_iscdi=true