Mechanical properties of niobium radio-frequency cavities
Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This c...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2015-08, Vol.642 (C), p.117-127 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 127 |
---|---|
container_issue | C |
container_start_page | 117 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 642 |
creator | Ciovati, G. Dhakal, P. Matalevich, J. Myneni, G. Schmidt, A. Iversen, J. Matheisen, A. Singer, W. |
description | Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium. |
doi_str_mv | 10.1016/j.msea.2015.06.095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1222197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509315301490</els_id><sourcerecordid>1718962810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-4d0bb7877214f28b776b0a805feda31e43f6b418922f76d21286ca3b2249596d3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU_Fk5fWmTRNGvAii1-w4kXPIU1TzNI2a9Jd8N-bUs-e5vK8M-88hFwjFAjI73bFEK0uKGBVAC9AVidkhbUocyZLfkpWICnmFcjynFzEuAMAZFCtiHyz5kuPzug-2we_t2FyNma-y0bnG3cYsqBb5_Mu2O-DHc1PZvTRzcwlOet0H-3V31yTz6fHj81Lvn1_ft08bHPDgE05a6FpRC0ERdbRuhGCN6BrqDrb6hItKzveMKwlpZ3gLUVac6PLhlImK8nbck1ulr0-Tk5F46bU2PhxtGZSSClFKRJ0u0Dph9QzTmpw0di-16P1h6hQpAuc1ggJpQtqgo8x2E7tgxt0-FEIapapdmqWqWaZCrhKMlPofgnZ9OnR2TAXSTps68Lco_Xuv_gvKm18Dg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718962810</pqid></control><display><type>article</type><title>Mechanical properties of niobium radio-frequency cavities</title><source>Access via ScienceDirect (Elsevier)</source><creator>Ciovati, G. ; Dhakal, P. ; Matalevich, J. ; Myneni, G. ; Schmidt, A. ; Iversen, J. ; Matheisen, A. ; Singer, W.</creator><creatorcontrib>Ciovati, G. ; Dhakal, P. ; Matalevich, J. ; Myneni, G. ; Schmidt, A. ; Iversen, J. ; Matheisen, A. ; Singer, W. ; Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><description>Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2015.06.095</identifier><language>eng</language><publisher>United States: Elsevier B.V</publisher><subject>Crystal structure ; Finite element method ; Holes ; MATERIALS SCIENCE ; Mathematical analysis ; Mechanical properties ; Niobium ; PARTICLE ACCELERATORS ; Purity ; Strain measurement ; Tensile strength</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-08, Vol.642 (C), p.117-127</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-4d0bb7877214f28b776b0a805feda31e43f6b418922f76d21286ca3b2249596d3</citedby><cites>FETCH-LOGICAL-c404t-4d0bb7877214f28b776b0a805feda31e43f6b418922f76d21286ca3b2249596d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2015.06.095$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1222197$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ciovati, G.</creatorcontrib><creatorcontrib>Dhakal, P.</creatorcontrib><creatorcontrib>Matalevich, J.</creatorcontrib><creatorcontrib>Myneni, G.</creatorcontrib><creatorcontrib>Schmidt, A.</creatorcontrib><creatorcontrib>Iversen, J.</creatorcontrib><creatorcontrib>Matheisen, A.</creatorcontrib><creatorcontrib>Singer, W.</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><title>Mechanical properties of niobium radio-frequency cavities</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium.</description><subject>Crystal structure</subject><subject>Finite element method</subject><subject>Holes</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>Mechanical properties</subject><subject>Niobium</subject><subject>PARTICLE ACCELERATORS</subject><subject>Purity</subject><subject>Strain measurement</subject><subject>Tensile strength</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AU_Fk5fWmTRNGvAii1-w4kXPIU1TzNI2a9Jd8N-bUs-e5vK8M-88hFwjFAjI73bFEK0uKGBVAC9AVidkhbUocyZLfkpWICnmFcjynFzEuAMAZFCtiHyz5kuPzug-2we_t2FyNma-y0bnG3cYsqBb5_Mu2O-DHc1PZvTRzcwlOet0H-3V31yTz6fHj81Lvn1_ft08bHPDgE05a6FpRC0ERdbRuhGCN6BrqDrb6hItKzveMKwlpZ3gLUVac6PLhlImK8nbck1ulr0-Tk5F46bU2PhxtGZSSClFKRJ0u0Dph9QzTmpw0di-16P1h6hQpAuc1ggJpQtqgo8x2E7tgxt0-FEIapapdmqWqWaZCrhKMlPofgnZ9OnR2TAXSTps68Lco_Xuv_gvKm18Dg</recordid><startdate>20150826</startdate><enddate>20150826</enddate><creator>Ciovati, G.</creator><creator>Dhakal, P.</creator><creator>Matalevich, J.</creator><creator>Myneni, G.</creator><creator>Schmidt, A.</creator><creator>Iversen, J.</creator><creator>Matheisen, A.</creator><creator>Singer, W.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150826</creationdate><title>Mechanical properties of niobium radio-frequency cavities</title><author>Ciovati, G. ; Dhakal, P. ; Matalevich, J. ; Myneni, G. ; Schmidt, A. ; Iversen, J. ; Matheisen, A. ; Singer, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-4d0bb7877214f28b776b0a805feda31e43f6b418922f76d21286ca3b2249596d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Crystal structure</topic><topic>Finite element method</topic><topic>Holes</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>Mechanical properties</topic><topic>Niobium</topic><topic>PARTICLE ACCELERATORS</topic><topic>Purity</topic><topic>Strain measurement</topic><topic>Tensile strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ciovati, G.</creatorcontrib><creatorcontrib>Dhakal, P.</creatorcontrib><creatorcontrib>Matalevich, J.</creatorcontrib><creatorcontrib>Myneni, G.</creatorcontrib><creatorcontrib>Schmidt, A.</creatorcontrib><creatorcontrib>Iversen, J.</creatorcontrib><creatorcontrib>Matheisen, A.</creatorcontrib><creatorcontrib>Singer, W.</creatorcontrib><creatorcontrib>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ciovati, G.</au><au>Dhakal, P.</au><au>Matalevich, J.</au><au>Myneni, G.</au><au>Schmidt, A.</au><au>Iversen, J.</au><au>Matheisen, A.</au><au>Singer, W.</au><aucorp>Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical properties of niobium radio-frequency cavities</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2015-08-26</date><risdate>2015</risdate><volume>642</volume><issue>C</issue><spage>117</spage><epage>127</epage><pages>117-127</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>Radio-frequency cavities made of bulk niobium are one of the components used in modern particle accelerators. The mechanical stability is an important aspect of cavity design, which typically relies on finite-element analysis simulations using material properties from tensile tests on sample. This contribution presents the results of strain and resonant frequency measurements as a function of a uniform pressure up to 620kPa, applied to single-cell niobium cavities with different crystallographic structure, purity and treatments. In addition, burst tests of high-purity multi-cell cavities with different crystallographic structures have been conducted up to the tensile strength of the material. Finite-element analysis of the single-cell cavity geometry is in good agreement with the observed behavior in the elastic regime assuming a Young’s modulus value of 88.5GPa and a Poisson’s ratio of 0.4, regardless of crystallographic structure, purity or treatment. However, the measured yield strength and tensile strength depend on crystallographic structure, material purity and treatment. In particular, the results from this study show that the mechanical properties of niobium cavities made from ingot material with large crystals are comparable to those of cavities made of fine-grain niobium.</abstract><cop>United States</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2015.06.095</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2015-08, Vol.642 (C), p.117-127 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_osti_scitechconnect_1222197 |
source | Access via ScienceDirect (Elsevier) |
subjects | Crystal structure Finite element method Holes MATERIALS SCIENCE Mathematical analysis Mechanical properties Niobium PARTICLE ACCELERATORS Purity Strain measurement Tensile strength |
title | Mechanical properties of niobium radio-frequency cavities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A38%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20properties%20of%20niobium%20radio-frequency%20cavities&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Ciovati,%20G.&rft.aucorp=Thomas%20Jefferson%20National%20Accelerator%20Facility%20(TJNAF),%20Newport%20News,%20VA%20(United%20States)&rft.date=2015-08-26&rft.volume=642&rft.issue=C&rft.spage=117&rft.epage=127&rft.pages=117-127&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2015.06.095&rft_dat=%3Cproquest_osti_%3E1718962810%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718962810&rft_id=info:pmid/&rft_els_id=S0921509315301490&rfr_iscdi=true |