Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism
The Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orb...
Gespeichert in:
Veröffentlicht in: | Physical review. B, Condensed matter and materials physics Condensed matter and materials physics, 2014-11, Vol.90 (20), Article 205102 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Physical review. B, Condensed matter and materials physics |
container_volume | 90 |
creator | Alam, Aftab Khan, Suffian N. Smirnov, A. V. Nicholson, D. M. Johnson, Duane D. |
description | The Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L sub(max) = (l, m) sub(max), while scattering matrices, which determine spectral properties, are truncated at L sub(tr) = (l, m) sub(tr) where phase shifts delta l>ltr are negligible. Historically, L sub(max) is set equal to L sub(tr), which is correct for large enough L sub(max) but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L sub(max) > L sub(tr) with delta l>ltr set to zero [X.-G. Zhang and W. H. Butler, Phys. Rev. B 46, 7433 (1992) (http://dx.doi.org/10.1103/PhysRevB.46.7433)]. We present a numerically efficient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [[scriptR] super(3) process with rank N(l sub(tr) + 1) super(2)] and includes higher-L contributions via linear algebra [[scriptR] super(2) process with rank N(l sub(max) + 1) super(2)]. The augmented-KKR approach yields properly normalized wave functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe, and L1 sub(0) CoPt and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L sub(max) for a given L sub(tr). |
doi_str_mv | 10.1103/PhysRevB.90.205102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1221663</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1700987565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-d907714bb95ce50ae434e3c48d7826ebe3e845c8502aabfc3f1e99341ce7b4da3</originalsourceid><addsrcrecordid>eNo10E1Lw0AQgOEgCtbqH_C0eNFL6n42iTctWqUFpSh4WzabSbuSbOrORum_N1I9zTA8zOFNknNGJ4xRcf2y2eEKvu4mBZ1wqhjlB8mIKUVTLtT74bDTIk8p4-w4OUH8oJTJQvJRUs4DgL9EUvfeRtd50vZNdNsGUrQmRgjOr0ncQBd25NvFDTEkhsGaCBUpDTokCPGG3Hpi-nULfrini8WK1F1oTeOwPU2OatMgnP3NcfL2cP86e0yXz_On2e0ytUKxmFYFzTImy7JQFhQ1IIUEYWVeZTmfQgkCcqlsrig3pqytqBkUhZDMQlbKyohxcrH_22F0Gq2LYDe28x5s1IxzNp2KAV3t0TZ0nz1g1K1DC01jPHQ9apbRoVSmpmqgfE9t6BAD1HobXGvCTjOqf6vr_-q6oHpfXfwA74t4Nw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1700987565</pqid></control><display><type>article</type><title>Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism</title><source>American Physical Society Journals</source><creator>Alam, Aftab ; Khan, Suffian N. ; Smirnov, A. V. ; Nicholson, D. M. ; Johnson, Duane D.</creator><creatorcontrib>Alam, Aftab ; Khan, Suffian N. ; Smirnov, A. V. ; Nicholson, D. M. ; Johnson, Duane D. ; Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP) ; Ames Lab., Ames, IA (United States)</creatorcontrib><description>The Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L sub(max) = (l, m) sub(max), while scattering matrices, which determine spectral properties, are truncated at L sub(tr) = (l, m) sub(tr) where phase shifts delta l>ltr are negligible. Historically, L sub(max) is set equal to L sub(tr), which is correct for large enough L sub(max) but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L sub(max) > L sub(tr) with delta l>ltr set to zero [X.-G. Zhang and W. H. Butler, Phys. Rev. B 46, 7433 (1992) (http://dx.doi.org/10.1103/PhysRevB.46.7433)]. We present a numerically efficient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [[scriptR] super(3) process with rank N(l sub(tr) + 1) super(2)] and includes higher-L contributions via linear algebra [[scriptR] super(2) process with rank N(l sub(max) + 1) super(2)]. The augmented-KKR approach yields properly normalized wave functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe, and L1 sub(0) CoPt and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L sub(max) for a given L sub(tr).</description><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.90.205102</identifier><language>eng</language><publisher>United States</publisher><subject>Condensed matter ; Convergence ; Fermi surfaces ; Formalism ; Green's functions ; MATERIALS SCIENCE ; Mathematical analysis ; Mathematical models ; Scattering ; Wave functions</subject><ispartof>Physical review. B, Condensed matter and materials physics, 2014-11, Vol.90 (20), Article 205102</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-d907714bb95ce50ae434e3c48d7826ebe3e845c8502aabfc3f1e99341ce7b4da3</citedby><cites>FETCH-LOGICAL-c351t-d907714bb95ce50ae434e3c48d7826ebe3e845c8502aabfc3f1e99341ce7b4da3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1221663$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alam, Aftab</creatorcontrib><creatorcontrib>Khan, Suffian N.</creatorcontrib><creatorcontrib>Smirnov, A. V.</creatorcontrib><creatorcontrib>Nicholson, D. M.</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><title>Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism</title><title>Physical review. B, Condensed matter and materials physics</title><description>The Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L sub(max) = (l, m) sub(max), while scattering matrices, which determine spectral properties, are truncated at L sub(tr) = (l, m) sub(tr) where phase shifts delta l>ltr are negligible. Historically, L sub(max) is set equal to L sub(tr), which is correct for large enough L sub(max) but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L sub(max) > L sub(tr) with delta l>ltr set to zero [X.-G. Zhang and W. H. Butler, Phys. Rev. B 46, 7433 (1992) (http://dx.doi.org/10.1103/PhysRevB.46.7433)]. We present a numerically efficient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [[scriptR] super(3) process with rank N(l sub(tr) + 1) super(2)] and includes higher-L contributions via linear algebra [[scriptR] super(2) process with rank N(l sub(max) + 1) super(2)]. The augmented-KKR approach yields properly normalized wave functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe, and L1 sub(0) CoPt and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L sub(max) for a given L sub(tr).</description><subject>Condensed matter</subject><subject>Convergence</subject><subject>Fermi surfaces</subject><subject>Formalism</subject><subject>Green's functions</subject><subject>MATERIALS SCIENCE</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Scattering</subject><subject>Wave functions</subject><issn>1098-0121</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo10E1Lw0AQgOEgCtbqH_C0eNFL6n42iTctWqUFpSh4WzabSbuSbOrORum_N1I9zTA8zOFNknNGJ4xRcf2y2eEKvu4mBZ1wqhjlB8mIKUVTLtT74bDTIk8p4-w4OUH8oJTJQvJRUs4DgL9EUvfeRtd50vZNdNsGUrQmRgjOr0ncQBd25NvFDTEkhsGaCBUpDTokCPGG3Hpi-nULfrini8WK1F1oTeOwPU2OatMgnP3NcfL2cP86e0yXz_On2e0ytUKxmFYFzTImy7JQFhQ1IIUEYWVeZTmfQgkCcqlsrig3pqytqBkUhZDMQlbKyohxcrH_22F0Gq2LYDe28x5s1IxzNp2KAV3t0TZ0nz1g1K1DC01jPHQ9apbRoVSmpmqgfE9t6BAD1HobXGvCTjOqf6vr_-q6oHpfXfwA74t4Nw</recordid><startdate>20141104</startdate><enddate>20141104</enddate><creator>Alam, Aftab</creator><creator>Khan, Suffian N.</creator><creator>Smirnov, A. V.</creator><creator>Nicholson, D. M.</creator><creator>Johnson, Duane D.</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141104</creationdate><title>Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism</title><author>Alam, Aftab ; Khan, Suffian N. ; Smirnov, A. V. ; Nicholson, D. M. ; Johnson, Duane D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-d907714bb95ce50ae434e3c48d7826ebe3e845c8502aabfc3f1e99341ce7b4da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Condensed matter</topic><topic>Convergence</topic><topic>Fermi surfaces</topic><topic>Formalism</topic><topic>Green's functions</topic><topic>MATERIALS SCIENCE</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Scattering</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alam, Aftab</creatorcontrib><creatorcontrib>Khan, Suffian N.</creatorcontrib><creatorcontrib>Smirnov, A. V.</creatorcontrib><creatorcontrib>Nicholson, D. M.</creatorcontrib><creatorcontrib>Johnson, Duane D.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</creatorcontrib><creatorcontrib>Ames Lab., Ames, IA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B, Condensed matter and materials physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alam, Aftab</au><au>Khan, Suffian N.</au><au>Smirnov, A. V.</au><au>Nicholson, D. M.</au><au>Johnson, Duane D.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Center for Defect Physics in Structural Materials (CDP)</aucorp><aucorp>Ames Lab., Ames, IA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism</atitle><jtitle>Physical review. B, Condensed matter and materials physics</jtitle><date>2014-11-04</date><risdate>2014</risdate><volume>90</volume><issue>20</issue><artnum>205102</artnum><issn>1098-0121</issn><eissn>1550-235X</eissn><abstract>The Korringa-Kohn-Rostoker (KKR) Green's function, multiple-scattering theory is an efficient site-centered, electronic-structure technique for addressing an assembly of N scatterers. Wave functions are expanded in a spherical-wave basis on each scattering center and indexed up to a maximum orbital and azimuthal number L sub(max) = (l, m) sub(max), while scattering matrices, which determine spectral properties, are truncated at L sub(tr) = (l, m) sub(tr) where phase shifts delta l>ltr are negligible. Historically, L sub(max) is set equal to L sub(tr), which is correct for large enough L sub(max) but not computationally expedient; a better procedure retains higher-order (free-electron and single-site) contributions for L sub(max) > L sub(tr) with delta l>ltr set to zero [X.-G. Zhang and W. H. Butler, Phys. Rev. B 46, 7433 (1992) (http://dx.doi.org/10.1103/PhysRevB.46.7433)]. We present a numerically efficient and accurate augmented-KKR Green's function formalism that solves the KKR equations by exact matrix inversion [[scriptR] super(3) process with rank N(l sub(tr) + 1) super(2)] and includes higher-L contributions via linear algebra [[scriptR] super(2) process with rank N(l sub(max) + 1) super(2)]. The augmented-KKR approach yields properly normalized wave functions, numerically cheaper basis-set convergence, and a total charge density and electron count that agrees with Lloyd's formula. We apply our formalism to fcc Cu, bcc Fe, and L1 sub(0) CoPt and present the numerical results for accuracy and for the convergence of the total energies, Fermi energies, and magnetic moments versus L sub(max) for a given L sub(tr).</abstract><cop>United States</cop><doi>10.1103/PhysRevB.90.205102</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1098-0121 |
ispartof | Physical review. B, Condensed matter and materials physics, 2014-11, Vol.90 (20), Article 205102 |
issn | 1098-0121 1550-235X |
language | eng |
recordid | cdi_osti_scitechconnect_1221663 |
source | American Physical Society Journals |
subjects | Condensed matter Convergence Fermi surfaces Formalism Green's functions MATERIALS SCIENCE Mathematical analysis Mathematical models Scattering Wave functions |
title | Green's function multiple-scattering theory with a truncated basis set: An augmented-KKR formalism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A18%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green's%20function%20multiple-scattering%20theory%20with%20a%20truncated%20basis%20set:%20An%20augmented-KKR%20formalism&rft.jtitle=Physical%20review.%20B,%20Condensed%20matter%20and%20materials%20physics&rft.au=Alam,%20Aftab&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Center%20for%20Defect%20Physics%20in%20Structural%20Materials%20(CDP)&rft.date=2014-11-04&rft.volume=90&rft.issue=20&rft.artnum=205102&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.90.205102&rft_dat=%3Cproquest_osti_%3E1700987565%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1700987565&rft_id=info:pmid/&rfr_iscdi=true |