Pairing symmetry of the one-band Hubbard model in the paramagnetic weak-coupling limit: A numerical RPA study

We study the spin-fluctuation-mediated superconducting pairing gap in a weak-coupling approach to the Hubbard model for a two-dimensional square lattice in the paramagnetic state. Performing a comprehensive theoretical study of the phase diagram as a function of filling, we find that the superconduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2015-09, Vol.92 (10), Article 104505
Hauptverfasser: Rømer, A. T., Kreisel, A., Eremin, I., Malakhov, M. A., Maier, T. A., Hirschfeld, P. J., Andersen, B. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physical review. B
container_volume 92
creator Rømer, A. T.
Kreisel, A.
Eremin, I.
Malakhov, M. A.
Maier, T. A.
Hirschfeld, P. J.
Andersen, B. M.
description We study the spin-fluctuation-mediated superconducting pairing gap in a weak-coupling approach to the Hubbard model for a two-dimensional square lattice in the paramagnetic state. Performing a comprehensive theoretical study of the phase diagram as a function of filling, we find that the superconducting gap exhibits transitions from p-wave at very low electron fillings to dx2-y2-wave symmetry close to half filling in agreement with previous reports. At intermediate filling levels, different gap symmetries appear as a consequence of the changes in the Fermi surface topology and the associated structure of the spin susceptibility. In particular, the vicinity of a Van Hove singularity in the electronic structure close to the Fermi level has important consequences for the gap structure in favoring the otherwise subdominant triplet solution over the singlet d-wave solution. By solving the full gap equation, we find that the energetically favorable triplet solutions are chiral and break time reversal symmetry. Finally, we also calculate the detailed angular gap structure of the quasiparticle spectrum, and show how spin-fluctuation-mediated pairing leads to significant deviations from the first harmonics both in the singlet dx2-y2 gap as well as the chiral triplet gap solution.
doi_str_mv 10.1103/PhysRevB.92.104505
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1214349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786170220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-cd288edede8330ef377713c259d62b777a09514499724e1749b51d17b6d1b2063</originalsourceid><addsrcrecordid>eNo1kcFu1DAQhiMEEqXwApwsTr1k8djOOu5tWxVaqRKrCiRulmPPdt3G9tZ2qPL2pGzRHGZG8-k_zNc0n4GuACj_ut3P5Q7_XKwUWwEVHe3eNCfQdbRlvPv9dpmp6lsKDN43H0p5oBSEEuykCVvjs4_3pMwhYM0zSTtS90hSxHYw0ZHraRhMdiQkhyPx8d_1YLIJ5j5i9ZY8o3lsbZoO40vQ6IOv52RD4hQwe2tGcrfdkFInN39s3u3MWPDTaz9tfn27-nl53d7--H5zubltrQBZW-tY36Nbquec4o5LKYFb1im3ZsOyGKo6EEIpyQSCFGrowIEc1g4GRtf8tPlyzE2lel2sr2j3NsWIturlCYILtUBnR-iQ09OEpergi8VxNBHTVDTIfg2SMkYXlB1Rm1MpGXf6kH0wedZA9YsA_V-AVkwfBfC_Uet6HQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786170220</pqid></control><display><type>article</type><title>Pairing symmetry of the one-band Hubbard model in the paramagnetic weak-coupling limit: A numerical RPA study</title><source>American Physical Society Journals</source><creator>Rømer, A. T. ; Kreisel, A. ; Eremin, I. ; Malakhov, M. A. ; Maier, T. A. ; Hirschfeld, P. J. ; Andersen, B. M.</creator><creatorcontrib>Rømer, A. T. ; Kreisel, A. ; Eremin, I. ; Malakhov, M. A. ; Maier, T. A. ; Hirschfeld, P. J. ; Andersen, B. M.</creatorcontrib><description>We study the spin-fluctuation-mediated superconducting pairing gap in a weak-coupling approach to the Hubbard model for a two-dimensional square lattice in the paramagnetic state. Performing a comprehensive theoretical study of the phase diagram as a function of filling, we find that the superconducting gap exhibits transitions from p-wave at very low electron fillings to dx2-y2-wave symmetry close to half filling in agreement with previous reports. At intermediate filling levels, different gap symmetries appear as a consequence of the changes in the Fermi surface topology and the associated structure of the spin susceptibility. In particular, the vicinity of a Van Hove singularity in the electronic structure close to the Fermi level has important consequences for the gap structure in favoring the otherwise subdominant triplet solution over the singlet d-wave solution. By solving the full gap equation, we find that the energetically favorable triplet solutions are chiral and break time reversal symmetry. Finally, we also calculate the detailed angular gap structure of the quasiparticle spectrum, and show how spin-fluctuation-mediated pairing leads to significant deviations from the first harmonics both in the singlet dx2-y2 gap as well as the chiral triplet gap solution.</description><identifier>ISSN: 1098-0121</identifier><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 1550-235X</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.92.104505</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Condensed matter ; Deviation ; Fermi surfaces ; Mathematical analysis ; Mathematical models ; Phase diagrams ; Superconductivity ; Symmetry</subject><ispartof>Physical review. B, 2015-09, Vol.92 (10), Article 104505</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-cd288edede8330ef377713c259d62b777a09514499724e1749b51d17b6d1b2063</citedby><cites>FETCH-LOGICAL-c417t-cd288edede8330ef377713c259d62b777a09514499724e1749b51d17b6d1b2063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1214349$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Rømer, A. T.</creatorcontrib><creatorcontrib>Kreisel, A.</creatorcontrib><creatorcontrib>Eremin, I.</creatorcontrib><creatorcontrib>Malakhov, M. A.</creatorcontrib><creatorcontrib>Maier, T. A.</creatorcontrib><creatorcontrib>Hirschfeld, P. J.</creatorcontrib><creatorcontrib>Andersen, B. M.</creatorcontrib><title>Pairing symmetry of the one-band Hubbard model in the paramagnetic weak-coupling limit: A numerical RPA study</title><title>Physical review. B</title><description>We study the spin-fluctuation-mediated superconducting pairing gap in a weak-coupling approach to the Hubbard model for a two-dimensional square lattice in the paramagnetic state. Performing a comprehensive theoretical study of the phase diagram as a function of filling, we find that the superconducting gap exhibits transitions from p-wave at very low electron fillings to dx2-y2-wave symmetry close to half filling in agreement with previous reports. At intermediate filling levels, different gap symmetries appear as a consequence of the changes in the Fermi surface topology and the associated structure of the spin susceptibility. In particular, the vicinity of a Van Hove singularity in the electronic structure close to the Fermi level has important consequences for the gap structure in favoring the otherwise subdominant triplet solution over the singlet d-wave solution. By solving the full gap equation, we find that the energetically favorable triplet solutions are chiral and break time reversal symmetry. Finally, we also calculate the detailed angular gap structure of the quasiparticle spectrum, and show how spin-fluctuation-mediated pairing leads to significant deviations from the first harmonics both in the singlet dx2-y2 gap as well as the chiral triplet gap solution.</description><subject>Condensed matter</subject><subject>Deviation</subject><subject>Fermi surfaces</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Phase diagrams</subject><subject>Superconductivity</subject><subject>Symmetry</subject><issn>1098-0121</issn><issn>2469-9950</issn><issn>1550-235X</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kcFu1DAQhiMEEqXwApwsTr1k8djOOu5tWxVaqRKrCiRulmPPdt3G9tZ2qPL2pGzRHGZG8-k_zNc0n4GuACj_ut3P5Q7_XKwUWwEVHe3eNCfQdbRlvPv9dpmp6lsKDN43H0p5oBSEEuykCVvjs4_3pMwhYM0zSTtS90hSxHYw0ZHraRhMdiQkhyPx8d_1YLIJ5j5i9ZY8o3lsbZoO40vQ6IOv52RD4hQwe2tGcrfdkFInN39s3u3MWPDTaz9tfn27-nl53d7--H5zubltrQBZW-tY36Nbquec4o5LKYFb1im3ZsOyGKo6EEIpyQSCFGrowIEc1g4GRtf8tPlyzE2lel2sr2j3NsWIturlCYILtUBnR-iQ09OEpergi8VxNBHTVDTIfg2SMkYXlB1Rm1MpGXf6kH0wedZA9YsA_V-AVkwfBfC_Uet6HQ</recordid><startdate>20150908</startdate><enddate>20150908</enddate><creator>Rømer, A. T.</creator><creator>Kreisel, A.</creator><creator>Eremin, I.</creator><creator>Malakhov, M. A.</creator><creator>Maier, T. A.</creator><creator>Hirschfeld, P. J.</creator><creator>Andersen, B. M.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150908</creationdate><title>Pairing symmetry of the one-band Hubbard model in the paramagnetic weak-coupling limit: A numerical RPA study</title><author>Rømer, A. T. ; Kreisel, A. ; Eremin, I. ; Malakhov, M. A. ; Maier, T. A. ; Hirschfeld, P. J. ; Andersen, B. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-cd288edede8330ef377713c259d62b777a09514499724e1749b51d17b6d1b2063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Condensed matter</topic><topic>Deviation</topic><topic>Fermi surfaces</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Phase diagrams</topic><topic>Superconductivity</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rømer, A. T.</creatorcontrib><creatorcontrib>Kreisel, A.</creatorcontrib><creatorcontrib>Eremin, I.</creatorcontrib><creatorcontrib>Malakhov, M. A.</creatorcontrib><creatorcontrib>Maier, T. A.</creatorcontrib><creatorcontrib>Hirschfeld, P. J.</creatorcontrib><creatorcontrib>Andersen, B. M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rømer, A. T.</au><au>Kreisel, A.</au><au>Eremin, I.</au><au>Malakhov, M. A.</au><au>Maier, T. A.</au><au>Hirschfeld, P. J.</au><au>Andersen, B. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pairing symmetry of the one-band Hubbard model in the paramagnetic weak-coupling limit: A numerical RPA study</atitle><jtitle>Physical review. B</jtitle><date>2015-09-08</date><risdate>2015</risdate><volume>92</volume><issue>10</issue><artnum>104505</artnum><issn>1098-0121</issn><issn>2469-9950</issn><eissn>1550-235X</eissn><eissn>2469-9969</eissn><abstract>We study the spin-fluctuation-mediated superconducting pairing gap in a weak-coupling approach to the Hubbard model for a two-dimensional square lattice in the paramagnetic state. Performing a comprehensive theoretical study of the phase diagram as a function of filling, we find that the superconducting gap exhibits transitions from p-wave at very low electron fillings to dx2-y2-wave symmetry close to half filling in agreement with previous reports. At intermediate filling levels, different gap symmetries appear as a consequence of the changes in the Fermi surface topology and the associated structure of the spin susceptibility. In particular, the vicinity of a Van Hove singularity in the electronic structure close to the Fermi level has important consequences for the gap structure in favoring the otherwise subdominant triplet solution over the singlet d-wave solution. By solving the full gap equation, we find that the energetically favorable triplet solutions are chiral and break time reversal symmetry. Finally, we also calculate the detailed angular gap structure of the quasiparticle spectrum, and show how spin-fluctuation-mediated pairing leads to significant deviations from the first harmonics both in the singlet dx2-y2 gap as well as the chiral triplet gap solution.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.92.104505</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, 2015-09, Vol.92 (10), Article 104505
issn 1098-0121
2469-9950
1550-235X
2469-9969
language eng
recordid cdi_osti_scitechconnect_1214349
source American Physical Society Journals
subjects Condensed matter
Deviation
Fermi surfaces
Mathematical analysis
Mathematical models
Phase diagrams
Superconductivity
Symmetry
title Pairing symmetry of the one-band Hubbard model in the paramagnetic weak-coupling limit: A numerical RPA study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A04%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pairing%20symmetry%20of%20the%20one-band%20Hubbard%20model%20in%20the%20paramagnetic%20weak-coupling%20limit:%20A%20numerical%20RPA%20study&rft.jtitle=Physical%20review.%20B&rft.au=R%C3%B8mer,%20A.%20T.&rft.date=2015-09-08&rft.volume=92&rft.issue=10&rft.artnum=104505&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.92.104505&rft_dat=%3Cproquest_osti_%3E1786170220%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786170220&rft_id=info:pmid/&rfr_iscdi=true