Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study
[Display omitted] The nucleation and growth of helium (He) bubbles in the bulk and at Σ3〈110〉{112} and Σ73b〈110〉{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2〈111〉{111} dislocation loop is formed with the sequential c...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2015-09, Vol.97 (C), p.86-93 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 93 |
---|---|
container_issue | C |
container_start_page | 86 |
container_title | Acta materialia |
container_volume | 97 |
creator | Yang, L. Gao, F. Kurtz, R.J. Zu, X.T. Peng, S.M. Long, X.G. Zhou, X.S. |
description | [Display omitted]
The nucleation and growth of helium (He) bubbles in the bulk and at Σ3〈110〉{112} and Σ73b〈110〉{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2〈111〉{111} dislocation loop is formed with the sequential collection of 〈111〉 interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2〈111〉 dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2〈111〉 loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯12] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments. |
doi_str_mv | 10.1016/j.actamat.2015.06.055 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1213011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964541500453X</els_id><sourcerecordid>1718946510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-92889c6f40c921fc506e2ec27f1bd3c5dc84461880ba060d7425883f6be744223</originalsourceid><addsrcrecordid>eNqFUU1v1TAQjBBIlMJPQLI4cUlqO7aTcEFVVShSJS5wtpzNhueHYxd_UD1-PQ6vd067Gs3Ozmia5i2jHaNMXR07A9lsJnecMtlR1VEpnzUXbBz6lgvZP697L6dWCSleNq9SOlLK-CDoRfPndl0RciJhJS6AcSTlWCCXiCR4ckBny0bmMs8OyY8YHvOBWF8B95MYvxCTK2p2JBS_mGjxn9QMQGwM_gO5JltwCMWZSJaTN5uFVH-U5fS6ebEal_DN07xsvn-6_XZz195__fzl5vq-BcFUbic-jhOoVVCYOFtBUoUcgQ8rm5ce5AKjEIqNI50NVXQZBJfj2K9qxkEIzvvL5t1ZN6RsdQKbEQ4QvK-5NeOsp4xV0vsz6SGGXwVT1ptNgM4Zj6EkzQY2TkJJRitVnqkQQ0oRV_0Q7WbiSTOq90L0UT8VovdCNFW6FlLvPp7vsIb9bTHuXtADLjbuVpZg_6PwF8cElrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718946510</pqid></control><display><type>article</type><title>Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, L. ; Gao, F. ; Kurtz, R.J. ; Zu, X.T. ; Peng, S.M. ; Long, X.G. ; Zhou, X.S.</creator><creatorcontrib>Yang, L. ; Gao, F. ; Kurtz, R.J. ; Zu, X.T. ; Peng, S.M. ; Long, X.G. ; Zhou, X.S. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>[Display omitted]
The nucleation and growth of helium (He) bubbles in the bulk and at Σ3〈110〉{112} and Σ73b〈110〉{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2〈111〉{111} dislocation loop is formed with the sequential collection of 〈111〉 interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2〈111〉 dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2〈111〉 loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯12] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2015.06.055</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Atomistic simulation ; Bcc iron ; Bubbles ; Clusters ; Dislocation loops ; Emittance ; Formations ; Grain boundaries ; He bubble growth ; Insertion ; Molecular dynamics</subject><ispartof>Acta materialia, 2015-09, Vol.97 (C), p.86-93</ispartof><rights>2015 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-92889c6f40c921fc506e2ec27f1bd3c5dc84461880ba060d7425883f6be744223</citedby><cites>FETCH-LOGICAL-c416t-92889c6f40c921fc506e2ec27f1bd3c5dc84461880ba060d7425883f6be744223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135964541500453X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1213011$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, L.</creatorcontrib><creatorcontrib>Gao, F.</creatorcontrib><creatorcontrib>Kurtz, R.J.</creatorcontrib><creatorcontrib>Zu, X.T.</creatorcontrib><creatorcontrib>Peng, S.M.</creatorcontrib><creatorcontrib>Long, X.G.</creatorcontrib><creatorcontrib>Zhou, X.S.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study</title><title>Acta materialia</title><description>[Display omitted]
The nucleation and growth of helium (He) bubbles in the bulk and at Σ3〈110〉{112} and Σ73b〈110〉{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2〈111〉{111} dislocation loop is formed with the sequential collection of 〈111〉 interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2〈111〉 dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2〈111〉 loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯12] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments.</description><subject>Atomistic simulation</subject><subject>Bcc iron</subject><subject>Bubbles</subject><subject>Clusters</subject><subject>Dislocation loops</subject><subject>Emittance</subject><subject>Formations</subject><subject>Grain boundaries</subject><subject>He bubble growth</subject><subject>Insertion</subject><subject>Molecular dynamics</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v1TAQjBBIlMJPQLI4cUlqO7aTcEFVVShSJS5wtpzNhueHYxd_UD1-PQ6vd067Gs3Ozmia5i2jHaNMXR07A9lsJnecMtlR1VEpnzUXbBz6lgvZP697L6dWCSleNq9SOlLK-CDoRfPndl0RciJhJS6AcSTlWCCXiCR4ckBny0bmMs8OyY8YHvOBWF8B95MYvxCTK2p2JBS_mGjxn9QMQGwM_gO5JltwCMWZSJaTN5uFVH-U5fS6ebEal_DN07xsvn-6_XZz195__fzl5vq-BcFUbic-jhOoVVCYOFtBUoUcgQ8rm5ce5AKjEIqNI50NVXQZBJfj2K9qxkEIzvvL5t1ZN6RsdQKbEQ4QvK-5NeOsp4xV0vsz6SGGXwVT1ptNgM4Zj6EkzQY2TkJJRitVnqkQQ0oRV_0Q7WbiSTOq90L0UT8VovdCNFW6FlLvPp7vsIb9bTHuXtADLjbuVpZg_6PwF8cElrA</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>Yang, L.</creator><creator>Gao, F.</creator><creator>Kurtz, R.J.</creator><creator>Zu, X.T.</creator><creator>Peng, S.M.</creator><creator>Long, X.G.</creator><creator>Zhou, X.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20150915</creationdate><title>Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study</title><author>Yang, L. ; Gao, F. ; Kurtz, R.J. ; Zu, X.T. ; Peng, S.M. ; Long, X.G. ; Zhou, X.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-92889c6f40c921fc506e2ec27f1bd3c5dc84461880ba060d7425883f6be744223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomistic simulation</topic><topic>Bcc iron</topic><topic>Bubbles</topic><topic>Clusters</topic><topic>Dislocation loops</topic><topic>Emittance</topic><topic>Formations</topic><topic>Grain boundaries</topic><topic>He bubble growth</topic><topic>Insertion</topic><topic>Molecular dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, L.</creatorcontrib><creatorcontrib>Gao, F.</creatorcontrib><creatorcontrib>Kurtz, R.J.</creatorcontrib><creatorcontrib>Zu, X.T.</creatorcontrib><creatorcontrib>Peng, S.M.</creatorcontrib><creatorcontrib>Long, X.G.</creatorcontrib><creatorcontrib>Zhou, X.S.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, L.</au><au>Gao, F.</au><au>Kurtz, R.J.</au><au>Zu, X.T.</au><au>Peng, S.M.</au><au>Long, X.G.</au><au>Zhou, X.S.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study</atitle><jtitle>Acta materialia</jtitle><date>2015-09-15</date><risdate>2015</risdate><volume>97</volume><issue>C</issue><spage>86</spage><epage>93</epage><pages>86-93</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>[Display omitted]
The nucleation and growth of helium (He) bubbles in the bulk and at Σ3〈110〉{112} and Σ73b〈110〉{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2〈111〉{111} dislocation loop is formed with the sequential collection of 〈111〉 interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2〈111〉 dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2〈111〉 loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯12] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2015.06.055</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2015-09, Vol.97 (C), p.86-93 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_osti_scitechconnect_1213011 |
source | Elsevier ScienceDirect Journals |
subjects | Atomistic simulation Bcc iron Bubbles Clusters Dislocation loops Emittance Formations Grain boundaries He bubble growth Insertion Molecular dynamics |
title | Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20local%20structure%20on%20helium%20bubble%20growth%20in%20bulk%20and%20at%20grain%20boundaries%20of%20bcc%20iron:%20A%20molecular%20dynamics%20study&rft.jtitle=Acta%20materialia&rft.au=Yang,%20L.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2015-09-15&rft.volume=97&rft.issue=C&rft.spage=86&rft.epage=93&rft.pages=86-93&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2015.06.055&rft_dat=%3Cproquest_osti_%3E1718946510%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718946510&rft_id=info:pmid/&rft_els_id=S135964541500453X&rfr_iscdi=true |