Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study

[Display omitted] The nucleation and growth of helium (He) bubbles in the bulk and at Σ3〈110〉{112} and Σ73b〈110〉{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2〈111〉{111} dislocation loop is formed with the sequential c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2015-09, Vol.97 (C), p.86-93
Hauptverfasser: Yang, L., Gao, F., Kurtz, R.J., Zu, X.T., Peng, S.M., Long, X.G., Zhou, X.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue C
container_start_page 86
container_title Acta materialia
container_volume 97
creator Yang, L.
Gao, F.
Kurtz, R.J.
Zu, X.T.
Peng, S.M.
Long, X.G.
Zhou, X.S.
description [Display omitted] The nucleation and growth of helium (He) bubbles in the bulk and at Σ3〈110〉{112} and Σ73b〈110〉{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2〈111〉{111} dislocation loop is formed with the sequential collection of 〈111〉 interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2〈111〉 dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2〈111〉 loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯12] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments.
doi_str_mv 10.1016/j.actamat.2015.06.055
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1213011</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S135964541500453X</els_id><sourcerecordid>1718946510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-92889c6f40c921fc506e2ec27f1bd3c5dc84461880ba060d7425883f6be744223</originalsourceid><addsrcrecordid>eNqFUU1v1TAQjBBIlMJPQLI4cUlqO7aTcEFVVShSJS5wtpzNhueHYxd_UD1-PQ6vd067Gs3Ozmia5i2jHaNMXR07A9lsJnecMtlR1VEpnzUXbBz6lgvZP697L6dWCSleNq9SOlLK-CDoRfPndl0RciJhJS6AcSTlWCCXiCR4ckBny0bmMs8OyY8YHvOBWF8B95MYvxCTK2p2JBS_mGjxn9QMQGwM_gO5JltwCMWZSJaTN5uFVH-U5fS6ebEal_DN07xsvn-6_XZz195__fzl5vq-BcFUbic-jhOoVVCYOFtBUoUcgQ8rm5ce5AKjEIqNI50NVXQZBJfj2K9qxkEIzvvL5t1ZN6RsdQKbEQ4QvK-5NeOsp4xV0vsz6SGGXwVT1ptNgM4Zj6EkzQY2TkJJRitVnqkQQ0oRV_0Q7WbiSTOq90L0UT8VovdCNFW6FlLvPp7vsIb9bTHuXtADLjbuVpZg_6PwF8cElrA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718946510</pqid></control><display><type>article</type><title>Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study</title><source>Elsevier ScienceDirect Journals</source><creator>Yang, L. ; Gao, F. ; Kurtz, R.J. ; Zu, X.T. ; Peng, S.M. ; Long, X.G. ; Zhou, X.S.</creator><creatorcontrib>Yang, L. ; Gao, F. ; Kurtz, R.J. ; Zu, X.T. ; Peng, S.M. ; Long, X.G. ; Zhou, X.S. ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>[Display omitted] The nucleation and growth of helium (He) bubbles in the bulk and at Σ3〈110〉{112} and Σ73b〈110〉{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2〈111〉{111} dislocation loop is formed with the sequential collection of 〈111〉 interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2〈111〉 dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2〈111〉 loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯12] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2015.06.055</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Atomistic simulation ; Bcc iron ; Bubbles ; Clusters ; Dislocation loops ; Emittance ; Formations ; Grain boundaries ; He bubble growth ; Insertion ; Molecular dynamics</subject><ispartof>Acta materialia, 2015-09, Vol.97 (C), p.86-93</ispartof><rights>2015 Acta Materialia Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-92889c6f40c921fc506e2ec27f1bd3c5dc84461880ba060d7425883f6be744223</citedby><cites>FETCH-LOGICAL-c416t-92889c6f40c921fc506e2ec27f1bd3c5dc84461880ba060d7425883f6be744223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S135964541500453X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1213011$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, L.</creatorcontrib><creatorcontrib>Gao, F.</creatorcontrib><creatorcontrib>Kurtz, R.J.</creatorcontrib><creatorcontrib>Zu, X.T.</creatorcontrib><creatorcontrib>Peng, S.M.</creatorcontrib><creatorcontrib>Long, X.G.</creatorcontrib><creatorcontrib>Zhou, X.S.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study</title><title>Acta materialia</title><description>[Display omitted] The nucleation and growth of helium (He) bubbles in the bulk and at Σ3〈110〉{112} and Σ73b〈110〉{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2〈111〉{111} dislocation loop is formed with the sequential collection of 〈111〉 interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2〈111〉 dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2〈111〉 loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯12] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments.</description><subject>Atomistic simulation</subject><subject>Bcc iron</subject><subject>Bubbles</subject><subject>Clusters</subject><subject>Dislocation loops</subject><subject>Emittance</subject><subject>Formations</subject><subject>Grain boundaries</subject><subject>He bubble growth</subject><subject>Insertion</subject><subject>Molecular dynamics</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUU1v1TAQjBBIlMJPQLI4cUlqO7aTcEFVVShSJS5wtpzNhueHYxd_UD1-PQ6vd067Gs3Ozmia5i2jHaNMXR07A9lsJnecMtlR1VEpnzUXbBz6lgvZP697L6dWCSleNq9SOlLK-CDoRfPndl0RciJhJS6AcSTlWCCXiCR4ckBny0bmMs8OyY8YHvOBWF8B95MYvxCTK2p2JBS_mGjxn9QMQGwM_gO5JltwCMWZSJaTN5uFVH-U5fS6ebEal_DN07xsvn-6_XZz195__fzl5vq-BcFUbic-jhOoVVCYOFtBUoUcgQ8rm5ce5AKjEIqNI50NVXQZBJfj2K9qxkEIzvvL5t1ZN6RsdQKbEQ4QvK-5NeOsp4xV0vsz6SGGXwVT1ptNgM4Zj6EkzQY2TkJJRitVnqkQQ0oRV_0Q7WbiSTOq90L0UT8VovdCNFW6FlLvPp7vsIb9bTHuXtADLjbuVpZg_6PwF8cElrA</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>Yang, L.</creator><creator>Gao, F.</creator><creator>Kurtz, R.J.</creator><creator>Zu, X.T.</creator><creator>Peng, S.M.</creator><creator>Long, X.G.</creator><creator>Zhou, X.S.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>OTOTI</scope></search><sort><creationdate>20150915</creationdate><title>Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study</title><author>Yang, L. ; Gao, F. ; Kurtz, R.J. ; Zu, X.T. ; Peng, S.M. ; Long, X.G. ; Zhou, X.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-92889c6f40c921fc506e2ec27f1bd3c5dc84461880ba060d7425883f6be744223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomistic simulation</topic><topic>Bcc iron</topic><topic>Bubbles</topic><topic>Clusters</topic><topic>Dislocation loops</topic><topic>Emittance</topic><topic>Formations</topic><topic>Grain boundaries</topic><topic>He bubble growth</topic><topic>Insertion</topic><topic>Molecular dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, L.</creatorcontrib><creatorcontrib>Gao, F.</creatorcontrib><creatorcontrib>Kurtz, R.J.</creatorcontrib><creatorcontrib>Zu, X.T.</creatorcontrib><creatorcontrib>Peng, S.M.</creatorcontrib><creatorcontrib>Long, X.G.</creatorcontrib><creatorcontrib>Zhou, X.S.</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>OSTI.GOV</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, L.</au><au>Gao, F.</au><au>Kurtz, R.J.</au><au>Zu, X.T.</au><au>Peng, S.M.</au><au>Long, X.G.</au><au>Zhou, X.S.</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study</atitle><jtitle>Acta materialia</jtitle><date>2015-09-15</date><risdate>2015</risdate><volume>97</volume><issue>C</issue><spage>86</spage><epage>93</epage><pages>86-93</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>[Display omitted] The nucleation and growth of helium (He) bubbles in the bulk and at Σ3〈110〉{112} and Σ73b〈110〉{661} grain boundaries (GBs) in bcc iron have been investigated using molecular dynamics simulations. The results show that a 1/2〈111〉{111} dislocation loop is formed with the sequential collection of 〈111〉 interstitial crowdions at the periphery of the He cluster and is eventually emitted from the He cluster. Insertion of 45 He atoms into a He cluster leads to the formation of a 1/2〈111〉 dislocation loop in Σ3 GB. It is of interest to notice that the transition of a dislocation segment through the GB leads to the formation of a step at the GB plane following the loop formation, accounting for the formation of a residual GB defect. A 1/2〈111〉 loop, with a {110} habit plane, is emitted with further increase of the He bubble size in the Σ3 GB. In contrast, the sequential insertion of He atoms in Σ73b GB continuously emits self-interstitial atoms (SIAs), but these SIAs rearrange at the core of the inherent GB dislocation, instead of forming a dislocation loop, which leads the GB dislocation to propagate along the [1¯1¯12] direction. In the bulk and Σ3 GB, the He bubble exhibits three-dimensionally spherical shape, but it forms longitudinal shape along the dislocation line in the Σ73 GB, a shape commonly observed at GBs in experiments.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2015.06.055</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2015-09, Vol.97 (C), p.86-93
issn 1359-6454
1873-2453
language eng
recordid cdi_osti_scitechconnect_1213011
source Elsevier ScienceDirect Journals
subjects Atomistic simulation
Bcc iron
Bubbles
Clusters
Dislocation loops
Emittance
Formations
Grain boundaries
He bubble growth
Insertion
Molecular dynamics
title Effects of local structure on helium bubble growth in bulk and at grain boundaries of bcc iron: A molecular dynamics study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20local%20structure%20on%20helium%20bubble%20growth%20in%20bulk%20and%20at%20grain%20boundaries%20of%20bcc%20iron:%20A%20molecular%20dynamics%20study&rft.jtitle=Acta%20materialia&rft.au=Yang,%20L.&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2015-09-15&rft.volume=97&rft.issue=C&rft.spage=86&rft.epage=93&rft.pages=86-93&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2015.06.055&rft_dat=%3Cproquest_osti_%3E1718946510%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1718946510&rft_id=info:pmid/&rft_els_id=S135964541500453X&rfr_iscdi=true