The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity

Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2012-01, Vol.335 (6064), p.53-59
Hauptverfasser: Williams, James H., DeBenedictis, Andrew, Ghanadan, Rebecca, Mahone, Amber, Moore, Jack, Morrow, William R., Price, Snuller, Torn, Margaret S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 59
container_issue 6064
container_start_page 53
container_title Science (American Association for the Advancement of Science)
container_volume 335
creator Williams, James H.
DeBenedictis, Andrew
Ghanadan, Rebecca
Mahone, Amber
Moore, Jack
Morrow, William R.
Price, Snuller
Torn, Margaret S.
description Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment.
doi_str_mv 10.1126/science.1208365
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1209365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41487099</jstor_id><sourcerecordid>41487099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-8da2534e6bfe588dd12f3a620698f032ea3d0d9e69c9d4b901d8af0fc84e962e3</originalsourceid><addsrcrecordid>eNqF0UGPEyEUB3BiNG5dPXvSEBPjaXYfMLDgzdRaTTZxY-p5wjAPO810qMCY9NtL07F79MTh_Xjwf4-Q1wxuGOPqNrkeR4c3jIMWSj4hCwZGVoaDeEoWAEJVGu7kFXmR0g6g1Ix4Tq44Z0yBgAVpN1ukG3TbMQzh15E-2LylOdDPiAe6jojjNkwJ6domutr3KfVhTHQ55UTbI-Ug4SM9tXjo_4RsB_ojDEiDp6sBXY696_PxJXnm7ZDw1Xxek59fVpvl1-r--_rb8tN95WTNcqU7y6WoUbUepdZdx7gXVnFQRnsQHK3ooDOojDNd3RpgnbYevNM1GsVRXJN3574h5b4pk8kllgvjWH7SlAGZMqCCPpzRIYbfE6bclFAOh8GOWII2hgtmlKn1_yWrldIM2OPDF7kLUxxL1hMSTCjOC7o9IxdDShF9c4j93sZjw6A57bKZd9nMuyw33s5tp3aP3cX_W14B72dgk7ODj3Z0fXp0UjKujSjuzdntUg7xUq9Zre_AGPEX8GevBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914313622</pqid></control><display><type>article</type><title>The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Williams, James H. ; DeBenedictis, Andrew ; Ghanadan, Rebecca ; Mahone, Amber ; Moore, Jack ; Morrow, William R. ; Price, Snuller ; Torn, Margaret S.</creator><creatorcontrib>Williams, James H. ; DeBenedictis, Andrew ; Ghanadan, Rebecca ; Mahone, Amber ; Moore, Jack ; Morrow, William R. ; Price, Snuller ; Torn, Margaret S. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1208365</identifier><identifier>PMID: 22116030</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Air pollution ; Air pollution caused by fuel industries ; Alternative energy sources ; Applied sciences ; Biofuels ; Climate change policy ; Decarburizing ; Economic data ; Economics ; Electric energy ; Electricity ; Electrification ; Emissions control ; Emissions policy ; Energy ; Energy economics ; Energy policy ; Energy technology ; Energy. Thermal use of fuels ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; Fossil fuels ; General, economic and professional studies ; General. Regulations. Norms. Economy ; GEOSCIENCES ; Greenhouse effect ; Greenhouse gas emissions ; Greenhouse gases ; Infrastructure ; Pollutant emissions ; Reduction ; RESEARCH ARTICLE ; Transformations</subject><ispartof>Science (American Association for the Advancement of Science), 2012-01, Vol.335 (6064), p.53-59</ispartof><rights>Copyright © 2012 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-8da2534e6bfe588dd12f3a620698f032ea3d0d9e69c9d4b901d8af0fc84e962e3</citedby><cites>FETCH-LOGICAL-c541t-8da2534e6bfe588dd12f3a620698f032ea3d0d9e69c9d4b901d8af0fc84e962e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41487099$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41487099$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2870,2871,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25512893$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22116030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1209365$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, James H.</creatorcontrib><creatorcontrib>DeBenedictis, Andrew</creatorcontrib><creatorcontrib>Ghanadan, Rebecca</creatorcontrib><creatorcontrib>Mahone, Amber</creatorcontrib><creatorcontrib>Moore, Jack</creatorcontrib><creatorcontrib>Morrow, William R.</creatorcontrib><creatorcontrib>Price, Snuller</creatorcontrib><creatorcontrib>Torn, Margaret S.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment.</description><subject>Air pollution</subject><subject>Air pollution caused by fuel industries</subject><subject>Alternative energy sources</subject><subject>Applied sciences</subject><subject>Biofuels</subject><subject>Climate change policy</subject><subject>Decarburizing</subject><subject>Economic data</subject><subject>Economics</subject><subject>Electric energy</subject><subject>Electricity</subject><subject>Electrification</subject><subject>Emissions control</subject><subject>Emissions policy</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy policy</subject><subject>Energy technology</subject><subject>Energy. Thermal use of fuels</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>Fossil fuels</subject><subject>General, economic and professional studies</subject><subject>General. Regulations. Norms. Economy</subject><subject>GEOSCIENCES</subject><subject>Greenhouse effect</subject><subject>Greenhouse gas emissions</subject><subject>Greenhouse gases</subject><subject>Infrastructure</subject><subject>Pollutant emissions</subject><subject>Reduction</subject><subject>RESEARCH ARTICLE</subject><subject>Transformations</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0UGPEyEUB3BiNG5dPXvSEBPjaXYfMLDgzdRaTTZxY-p5wjAPO810qMCY9NtL07F79MTh_Xjwf4-Q1wxuGOPqNrkeR4c3jIMWSj4hCwZGVoaDeEoWAEJVGu7kFXmR0g6g1Ix4Tq44Z0yBgAVpN1ukG3TbMQzh15E-2LylOdDPiAe6jojjNkwJ6domutr3KfVhTHQ55UTbI-Ug4SM9tXjo_4RsB_ojDEiDp6sBXY696_PxJXnm7ZDw1Xxek59fVpvl1-r--_rb8tN95WTNcqU7y6WoUbUepdZdx7gXVnFQRnsQHK3ooDOojDNd3RpgnbYevNM1GsVRXJN3574h5b4pk8kllgvjWH7SlAGZMqCCPpzRIYbfE6bclFAOh8GOWII2hgtmlKn1_yWrldIM2OPDF7kLUxxL1hMSTCjOC7o9IxdDShF9c4j93sZjw6A57bKZd9nMuyw33s5tp3aP3cX_W14B72dgk7ODj3Z0fXp0UjKujSjuzdntUg7xUq9Zre_AGPEX8GevBg</recordid><startdate>20120106</startdate><enddate>20120106</enddate><creator>Williams, James H.</creator><creator>DeBenedictis, Andrew</creator><creator>Ghanadan, Rebecca</creator><creator>Mahone, Amber</creator><creator>Moore, Jack</creator><creator>Morrow, William R.</creator><creator>Price, Snuller</creator><creator>Torn, Margaret S.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SU</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20120106</creationdate><title>The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity</title><author>Williams, James H. ; DeBenedictis, Andrew ; Ghanadan, Rebecca ; Mahone, Amber ; Moore, Jack ; Morrow, William R. ; Price, Snuller ; Torn, Margaret S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-8da2534e6bfe588dd12f3a620698f032ea3d0d9e69c9d4b901d8af0fc84e962e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air pollution</topic><topic>Air pollution caused by fuel industries</topic><topic>Alternative energy sources</topic><topic>Applied sciences</topic><topic>Biofuels</topic><topic>Climate change policy</topic><topic>Decarburizing</topic><topic>Economic data</topic><topic>Economics</topic><topic>Electric energy</topic><topic>Electricity</topic><topic>Electrification</topic><topic>Emissions control</topic><topic>Emissions policy</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy policy</topic><topic>Energy technology</topic><topic>Energy. Thermal use of fuels</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>Fossil fuels</topic><topic>General, economic and professional studies</topic><topic>General. Regulations. Norms. Economy</topic><topic>GEOSCIENCES</topic><topic>Greenhouse effect</topic><topic>Greenhouse gas emissions</topic><topic>Greenhouse gases</topic><topic>Infrastructure</topic><topic>Pollutant emissions</topic><topic>Reduction</topic><topic>RESEARCH ARTICLE</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, James H.</creatorcontrib><creatorcontrib>DeBenedictis, Andrew</creatorcontrib><creatorcontrib>Ghanadan, Rebecca</creatorcontrib><creatorcontrib>Mahone, Amber</creatorcontrib><creatorcontrib>Moore, Jack</creatorcontrib><creatorcontrib>Morrow, William R.</creatorcontrib><creatorcontrib>Price, Snuller</creatorcontrib><creatorcontrib>Torn, Margaret S.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, James H.</au><au>DeBenedictis, Andrew</au><au>Ghanadan, Rebecca</au><au>Mahone, Amber</au><au>Moore, Jack</au><au>Morrow, William R.</au><au>Price, Snuller</au><au>Torn, Margaret S.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2012-01-06</date><risdate>2012</risdate><volume>335</volume><issue>6064</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>22116030</pmid><doi>10.1126/science.1208365</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2012-01, Vol.335 (6064), p.53-59
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1209365
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Air pollution
Air pollution caused by fuel industries
Alternative energy sources
Applied sciences
Biofuels
Climate change policy
Decarburizing
Economic data
Economics
Electric energy
Electricity
Electrification
Emissions control
Emissions policy
Energy
Energy economics
Energy policy
Energy technology
Energy. Thermal use of fuels
ENVIRONMENTAL SCIENCES
Exact sciences and technology
Fossil fuels
General, economic and professional studies
General. Regulations. Norms. Economy
GEOSCIENCES
Greenhouse effect
Greenhouse gas emissions
Greenhouse gases
Infrastructure
Pollutant emissions
Reduction
RESEARCH ARTICLE
Transformations
title The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Technology%20Path%20to%20Deep%20Greenhouse%20Gas%20Emissions%20Cuts%20by%202050:%20The%20Pivotal%20Role%20of%20Electricity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Williams,%20James%20H.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2012-01-06&rft.volume=335&rft.issue=6064&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1208365&rft_dat=%3Cjstor_osti_%3E41487099%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914313622&rft_id=info:pmid/22116030&rft_jstor_id=41487099&rfr_iscdi=true