The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity
Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California'...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2012-01, Vol.335 (6064), p.53-59 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 6064 |
container_start_page | 53 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 335 |
creator | Williams, James H. DeBenedictis, Andrew Ghanadan, Rebecca Mahone, Amber Moore, Jack Morrow, William R. Price, Snuller Torn, Margaret S. |
description | Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment. |
doi_str_mv | 10.1126/science.1208365 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1209365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>41487099</jstor_id><sourcerecordid>41487099</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-8da2534e6bfe588dd12f3a620698f032ea3d0d9e69c9d4b901d8af0fc84e962e3</originalsourceid><addsrcrecordid>eNqF0UGPEyEUB3BiNG5dPXvSEBPjaXYfMLDgzdRaTTZxY-p5wjAPO810qMCY9NtL07F79MTh_Xjwf4-Q1wxuGOPqNrkeR4c3jIMWSj4hCwZGVoaDeEoWAEJVGu7kFXmR0g6g1Ix4Tq44Z0yBgAVpN1ukG3TbMQzh15E-2LylOdDPiAe6jojjNkwJ6domutr3KfVhTHQ55UTbI-Ug4SM9tXjo_4RsB_ojDEiDp6sBXY696_PxJXnm7ZDw1Xxek59fVpvl1-r--_rb8tN95WTNcqU7y6WoUbUepdZdx7gXVnFQRnsQHK3ooDOojDNd3RpgnbYevNM1GsVRXJN3574h5b4pk8kllgvjWH7SlAGZMqCCPpzRIYbfE6bclFAOh8GOWII2hgtmlKn1_yWrldIM2OPDF7kLUxxL1hMSTCjOC7o9IxdDShF9c4j93sZjw6A57bKZd9nMuyw33s5tp3aP3cX_W14B72dgk7ODj3Z0fXp0UjKujSjuzdntUg7xUq9Zre_AGPEX8GevBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>914313622</pqid></control><display><type>article</type><title>The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Williams, James H. ; DeBenedictis, Andrew ; Ghanadan, Rebecca ; Mahone, Amber ; Moore, Jack ; Morrow, William R. ; Price, Snuller ; Torn, Margaret S.</creator><creatorcontrib>Williams, James H. ; DeBenedictis, Andrew ; Ghanadan, Rebecca ; Mahone, Amber ; Moore, Jack ; Morrow, William R. ; Price, Snuller ; Torn, Margaret S. ; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><description>Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1208365</identifier><identifier>PMID: 22116030</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Air pollution ; Air pollution caused by fuel industries ; Alternative energy sources ; Applied sciences ; Biofuels ; Climate change policy ; Decarburizing ; Economic data ; Economics ; Electric energy ; Electricity ; Electrification ; Emissions control ; Emissions policy ; Energy ; Energy economics ; Energy policy ; Energy technology ; Energy. Thermal use of fuels ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; Fossil fuels ; General, economic and professional studies ; General. Regulations. Norms. Economy ; GEOSCIENCES ; Greenhouse effect ; Greenhouse gas emissions ; Greenhouse gases ; Infrastructure ; Pollutant emissions ; Reduction ; RESEARCH ARTICLE ; Transformations</subject><ispartof>Science (American Association for the Advancement of Science), 2012-01, Vol.335 (6064), p.53-59</ispartof><rights>Copyright © 2012 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2012, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-8da2534e6bfe588dd12f3a620698f032ea3d0d9e69c9d4b901d8af0fc84e962e3</citedby><cites>FETCH-LOGICAL-c541t-8da2534e6bfe588dd12f3a620698f032ea3d0d9e69c9d4b901d8af0fc84e962e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/41487099$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/41487099$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2870,2871,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25512893$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22116030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1209365$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Williams, James H.</creatorcontrib><creatorcontrib>DeBenedictis, Andrew</creatorcontrib><creatorcontrib>Ghanadan, Rebecca</creatorcontrib><creatorcontrib>Mahone, Amber</creatorcontrib><creatorcontrib>Moore, Jack</creatorcontrib><creatorcontrib>Morrow, William R.</creatorcontrib><creatorcontrib>Price, Snuller</creatorcontrib><creatorcontrib>Torn, Margaret S.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><title>The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment.</description><subject>Air pollution</subject><subject>Air pollution caused by fuel industries</subject><subject>Alternative energy sources</subject><subject>Applied sciences</subject><subject>Biofuels</subject><subject>Climate change policy</subject><subject>Decarburizing</subject><subject>Economic data</subject><subject>Economics</subject><subject>Electric energy</subject><subject>Electricity</subject><subject>Electrification</subject><subject>Emissions control</subject><subject>Emissions policy</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy policy</subject><subject>Energy technology</subject><subject>Energy. Thermal use of fuels</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>Fossil fuels</subject><subject>General, economic and professional studies</subject><subject>General. Regulations. Norms. Economy</subject><subject>GEOSCIENCES</subject><subject>Greenhouse effect</subject><subject>Greenhouse gas emissions</subject><subject>Greenhouse gases</subject><subject>Infrastructure</subject><subject>Pollutant emissions</subject><subject>Reduction</subject><subject>RESEARCH ARTICLE</subject><subject>Transformations</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqF0UGPEyEUB3BiNG5dPXvSEBPjaXYfMLDgzdRaTTZxY-p5wjAPO810qMCY9NtL07F79MTh_Xjwf4-Q1wxuGOPqNrkeR4c3jIMWSj4hCwZGVoaDeEoWAEJVGu7kFXmR0g6g1Ix4Tq44Z0yBgAVpN1ukG3TbMQzh15E-2LylOdDPiAe6jojjNkwJ6domutr3KfVhTHQ55UTbI-Ug4SM9tXjo_4RsB_ojDEiDp6sBXY696_PxJXnm7ZDw1Xxek59fVpvl1-r--_rb8tN95WTNcqU7y6WoUbUepdZdx7gXVnFQRnsQHK3ooDOojDNd3RpgnbYevNM1GsVRXJN3574h5b4pk8kllgvjWH7SlAGZMqCCPpzRIYbfE6bclFAOh8GOWII2hgtmlKn1_yWrldIM2OPDF7kLUxxL1hMSTCjOC7o9IxdDShF9c4j93sZjw6A57bKZd9nMuyw33s5tp3aP3cX_W14B72dgk7ODj3Z0fXp0UjKujSjuzdntUg7xUq9Zre_AGPEX8GevBg</recordid><startdate>20120106</startdate><enddate>20120106</enddate><creator>Williams, James H.</creator><creator>DeBenedictis, Andrew</creator><creator>Ghanadan, Rebecca</creator><creator>Mahone, Amber</creator><creator>Moore, Jack</creator><creator>Morrow, William R.</creator><creator>Price, Snuller</creator><creator>Torn, Margaret S.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7SU</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20120106</creationdate><title>The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity</title><author>Williams, James H. ; DeBenedictis, Andrew ; Ghanadan, Rebecca ; Mahone, Amber ; Moore, Jack ; Morrow, William R. ; Price, Snuller ; Torn, Margaret S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-8da2534e6bfe588dd12f3a620698f032ea3d0d9e69c9d4b901d8af0fc84e962e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Air pollution</topic><topic>Air pollution caused by fuel industries</topic><topic>Alternative energy sources</topic><topic>Applied sciences</topic><topic>Biofuels</topic><topic>Climate change policy</topic><topic>Decarburizing</topic><topic>Economic data</topic><topic>Economics</topic><topic>Electric energy</topic><topic>Electricity</topic><topic>Electrification</topic><topic>Emissions control</topic><topic>Emissions policy</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy policy</topic><topic>Energy technology</topic><topic>Energy. Thermal use of fuels</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>Fossil fuels</topic><topic>General, economic and professional studies</topic><topic>General. Regulations. Norms. Economy</topic><topic>GEOSCIENCES</topic><topic>Greenhouse effect</topic><topic>Greenhouse gas emissions</topic><topic>Greenhouse gases</topic><topic>Infrastructure</topic><topic>Pollutant emissions</topic><topic>Reduction</topic><topic>RESEARCH ARTICLE</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williams, James H.</creatorcontrib><creatorcontrib>DeBenedictis, Andrew</creatorcontrib><creatorcontrib>Ghanadan, Rebecca</creatorcontrib><creatorcontrib>Mahone, Amber</creatorcontrib><creatorcontrib>Moore, Jack</creatorcontrib><creatorcontrib>Morrow, William R.</creatorcontrib><creatorcontrib>Price, Snuller</creatorcontrib><creatorcontrib>Torn, Margaret S.</creatorcontrib><creatorcontrib>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environmental Engineering Abstracts</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williams, James H.</au><au>DeBenedictis, Andrew</au><au>Ghanadan, Rebecca</au><au>Mahone, Amber</au><au>Moore, Jack</au><au>Morrow, William R.</au><au>Price, Snuller</au><au>Torn, Margaret S.</au><aucorp>Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2012-01-06</date><risdate>2012</risdate><volume>335</volume><issue>6064</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California's goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>22116030</pmid><doi>10.1126/science.1208365</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2012-01, Vol.335 (6064), p.53-59 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1209365 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Air pollution Air pollution caused by fuel industries Alternative energy sources Applied sciences Biofuels Climate change policy Decarburizing Economic data Economics Electric energy Electricity Electrification Emissions control Emissions policy Energy Energy economics Energy policy Energy technology Energy. Thermal use of fuels ENVIRONMENTAL SCIENCES Exact sciences and technology Fossil fuels General, economic and professional studies General. Regulations. Norms. Economy GEOSCIENCES Greenhouse effect Greenhouse gas emissions Greenhouse gases Infrastructure Pollutant emissions Reduction RESEARCH ARTICLE Transformations |
title | The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A56%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Technology%20Path%20to%20Deep%20Greenhouse%20Gas%20Emissions%20Cuts%20by%202050:%20The%20Pivotal%20Role%20of%20Electricity&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Williams,%20James%20H.&rft.aucorp=Lawrence%20Berkeley%20National%20Lab.%20(LBNL),%20Berkeley,%20CA%20(United%20States)&rft.date=2012-01-06&rft.volume=335&rft.issue=6064&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1208365&rft_dat=%3Cjstor_osti_%3E41487099%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=914313622&rft_id=info:pmid/22116030&rft_jstor_id=41487099&rfr_iscdi=true |