Electron nanoprobe induced oxidation: a simulation of direct-write purification
Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities v...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2015-07, Vol.17 (28), p.18294-18304 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18304 |
---|---|
container_issue | 28 |
container_start_page | 18294 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 17 |
creator | Fowlkes, J D Geier, B Lewis, B B Rack, P D Stanford, M G Winkler, R Plank, H |
description | Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal-carbon deposits (e.g., PtC5) in the presence of H2O or O2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H2O purifies by a bottom-up mechanism while O2 purifies from the top-down. The simulation results presented here suggest that the chemisorption of dissolved O2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O2 and H2O. These results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined. |
doi_str_mv | 10.1039/c5cp01196e |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1209204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1695186463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-26b02167778c498978dcf7bccb836507148c6c51eaf786af608e5728f49e4b243</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMo7rp68QdI8SRCNUnz6U3K-gEL60HPpZ0mGGmbNWlR_73dD_fsaWaYZ4Z35kXonOAbgjN9CxxWmBAtzAGaEiayVGPFDve5FBN0EuMHxphwkh2jCRWYKyn5FC3njYE--C7pys6vgq9M4rp6AFMn_tvVZe98d5eUSXTt0GyqxNukdmEcS7-C602yGoKzDjbNU3Rkyyaas12cobeH-Wv-lC6Wj8_5_SIFRlmfUlFhSoSUUgHTSktVg5UVQKUywbEkTIEATkxppRKlFVgZLqmyTBtWUZbN0OV2r4-9KyKMOuAdfNeNsgpCsaZ4DV1tofGuz8HEvmhdBNM0ZWf8EAsiidKZzMQ_UKE5UWJ86Iheb1EIPsZgbLEKri3DT0FwsTakyHn-sjFkPsIXu71D1Zp6j_45kP0CypKEsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695186463</pqid></control><display><type>article</type><title>Electron nanoprobe induced oxidation: a simulation of direct-write purification</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Fowlkes, J D ; Geier, B ; Lewis, B B ; Rack, P D ; Stanford, M G ; Winkler, R ; Plank, H</creator><creatorcontrib>Fowlkes, J D ; Geier, B ; Lewis, B B ; Rack, P D ; Stanford, M G ; Winkler, R ; Plank, H ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal-carbon deposits (e.g., PtC5) in the presence of H2O or O2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H2O purifies by a bottom-up mechanism while O2 purifies from the top-down. The simulation results presented here suggest that the chemisorption of dissolved O2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O2 and H2O. These results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp01196e</identifier><identifier>PMID: 26058775</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemisorption ; Deposition ; Deposits ; Dissolution ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanostructure ; Oxidation ; Purification ; Simulation</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-07, Vol.17 (28), p.18294-18304</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-26b02167778c498978dcf7bccb836507148c6c51eaf786af608e5728f49e4b243</citedby><cites>FETCH-LOGICAL-c424t-26b02167778c498978dcf7bccb836507148c6c51eaf786af608e5728f49e4b243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26058775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1209204$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fowlkes, J D</creatorcontrib><creatorcontrib>Geier, B</creatorcontrib><creatorcontrib>Lewis, B B</creatorcontrib><creatorcontrib>Rack, P D</creatorcontrib><creatorcontrib>Stanford, M G</creatorcontrib><creatorcontrib>Winkler, R</creatorcontrib><creatorcontrib>Plank, H</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Electron nanoprobe induced oxidation: a simulation of direct-write purification</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal-carbon deposits (e.g., PtC5) in the presence of H2O or O2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H2O purifies by a bottom-up mechanism while O2 purifies from the top-down. The simulation results presented here suggest that the chemisorption of dissolved O2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O2 and H2O. These results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.</description><subject>Chemisorption</subject><subject>Deposition</subject><subject>Deposits</subject><subject>Dissolution</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanostructure</subject><subject>Oxidation</subject><subject>Purification</subject><subject>Simulation</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMo7rp68QdI8SRCNUnz6U3K-gEL60HPpZ0mGGmbNWlR_73dD_fsaWaYZ4Z35kXonOAbgjN9CxxWmBAtzAGaEiayVGPFDve5FBN0EuMHxphwkh2jCRWYKyn5FC3njYE--C7pys6vgq9M4rp6AFMn_tvVZe98d5eUSXTt0GyqxNukdmEcS7-C602yGoKzDjbNU3Rkyyaas12cobeH-Wv-lC6Wj8_5_SIFRlmfUlFhSoSUUgHTSktVg5UVQKUywbEkTIEATkxppRKlFVgZLqmyTBtWUZbN0OV2r4-9KyKMOuAdfNeNsgpCsaZ4DV1tofGuz8HEvmhdBNM0ZWf8EAsiidKZzMQ_UKE5UWJ86Iheb1EIPsZgbLEKri3DT0FwsTakyHn-sjFkPsIXu71D1Zp6j_45kP0CypKEsw</recordid><startdate>20150728</startdate><enddate>20150728</enddate><creator>Fowlkes, J D</creator><creator>Geier, B</creator><creator>Lewis, B B</creator><creator>Rack, P D</creator><creator>Stanford, M G</creator><creator>Winkler, R</creator><creator>Plank, H</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150728</creationdate><title>Electron nanoprobe induced oxidation: a simulation of direct-write purification</title><author>Fowlkes, J D ; Geier, B ; Lewis, B B ; Rack, P D ; Stanford, M G ; Winkler, R ; Plank, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-26b02167778c498978dcf7bccb836507148c6c51eaf786af608e5728f49e4b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemisorption</topic><topic>Deposition</topic><topic>Deposits</topic><topic>Dissolution</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanostructure</topic><topic>Oxidation</topic><topic>Purification</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fowlkes, J D</creatorcontrib><creatorcontrib>Geier, B</creatorcontrib><creatorcontrib>Lewis, B B</creatorcontrib><creatorcontrib>Rack, P D</creatorcontrib><creatorcontrib>Stanford, M G</creatorcontrib><creatorcontrib>Winkler, R</creatorcontrib><creatorcontrib>Plank, H</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fowlkes, J D</au><au>Geier, B</au><au>Lewis, B B</au><au>Rack, P D</au><au>Stanford, M G</au><au>Winkler, R</au><au>Plank, H</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron nanoprobe induced oxidation: a simulation of direct-write purification</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-07-28</date><risdate>2015</risdate><volume>17</volume><issue>28</issue><spage>18294</spage><epage>18304</epage><pages>18294-18304</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal-carbon deposits (e.g., PtC5) in the presence of H2O or O2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H2O purifies by a bottom-up mechanism while O2 purifies from the top-down. The simulation results presented here suggest that the chemisorption of dissolved O2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O2 and H2O. These results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>26058775</pmid><doi>10.1039/c5cp01196e</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2015-07, Vol.17 (28), p.18294-18304 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_osti_scitechconnect_1209204 |
source | Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Chemisorption Deposition Deposits Dissolution NANOSCIENCE AND NANOTECHNOLOGY Nanostructure Oxidation Purification Simulation |
title | Electron nanoprobe induced oxidation: a simulation of direct-write purification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20nanoprobe%20induced%20oxidation:%20a%20simulation%20of%20direct-write%20purification&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Fowlkes,%20J%20D&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-07-28&rft.volume=17&rft.issue=28&rft.spage=18294&rft.epage=18304&rft.pages=18294-18304&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp01196e&rft_dat=%3Cproquest_osti_%3E1695186463%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695186463&rft_id=info:pmid/26058775&rfr_iscdi=true |