Electron nanoprobe induced oxidation: a simulation of direct-write purification

Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2015-07, Vol.17 (28), p.18294-18304
Hauptverfasser: Fowlkes, J D, Geier, B, Lewis, B B, Rack, P D, Stanford, M G, Winkler, R, Plank, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18304
container_issue 28
container_start_page 18294
container_title Physical chemistry chemical physics : PCCP
container_volume 17
creator Fowlkes, J D
Geier, B
Lewis, B B
Rack, P D
Stanford, M G
Winkler, R
Plank, H
description Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal-carbon deposits (e.g., PtC5) in the presence of H2O or O2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H2O purifies by a bottom-up mechanism while O2 purifies from the top-down. The simulation results presented here suggest that the chemisorption of dissolved O2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O2 and H2O. These results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.
doi_str_mv 10.1039/c5cp01196e
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1209204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1695186463</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-26b02167778c498978dcf7bccb836507148c6c51eaf786af608e5728f49e4b243</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMo7rp68QdI8SRCNUnz6U3K-gEL60HPpZ0mGGmbNWlR_73dD_fsaWaYZ4Z35kXonOAbgjN9CxxWmBAtzAGaEiayVGPFDve5FBN0EuMHxphwkh2jCRWYKyn5FC3njYE--C7pys6vgq9M4rp6AFMn_tvVZe98d5eUSXTt0GyqxNukdmEcS7-C602yGoKzDjbNU3Rkyyaas12cobeH-Wv-lC6Wj8_5_SIFRlmfUlFhSoSUUgHTSktVg5UVQKUywbEkTIEATkxppRKlFVgZLqmyTBtWUZbN0OV2r4-9KyKMOuAdfNeNsgpCsaZ4DV1tofGuz8HEvmhdBNM0ZWf8EAsiidKZzMQ_UKE5UWJ86Iheb1EIPsZgbLEKri3DT0FwsTakyHn-sjFkPsIXu71D1Zp6j_45kP0CypKEsw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695186463</pqid></control><display><type>article</type><title>Electron nanoprobe induced oxidation: a simulation of direct-write purification</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Fowlkes, J D ; Geier, B ; Lewis, B B ; Rack, P D ; Stanford, M G ; Winkler, R ; Plank, H</creator><creatorcontrib>Fowlkes, J D ; Geier, B ; Lewis, B B ; Rack, P D ; Stanford, M G ; Winkler, R ; Plank, H ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal-carbon deposits (e.g., PtC5) in the presence of H2O or O2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H2O purifies by a bottom-up mechanism while O2 purifies from the top-down. The simulation results presented here suggest that the chemisorption of dissolved O2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O2 and H2O. These results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c5cp01196e</identifier><identifier>PMID: 26058775</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Chemisorption ; Deposition ; Deposits ; Dissolution ; NANOSCIENCE AND NANOTECHNOLOGY ; Nanostructure ; Oxidation ; Purification ; Simulation</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-07, Vol.17 (28), p.18294-18304</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-26b02167778c498978dcf7bccb836507148c6c51eaf786af608e5728f49e4b243</citedby><cites>FETCH-LOGICAL-c424t-26b02167778c498978dcf7bccb836507148c6c51eaf786af608e5728f49e4b243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26058775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1209204$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fowlkes, J D</creatorcontrib><creatorcontrib>Geier, B</creatorcontrib><creatorcontrib>Lewis, B B</creatorcontrib><creatorcontrib>Rack, P D</creatorcontrib><creatorcontrib>Stanford, M G</creatorcontrib><creatorcontrib>Winkler, R</creatorcontrib><creatorcontrib>Plank, H</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Electron nanoprobe induced oxidation: a simulation of direct-write purification</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal-carbon deposits (e.g., PtC5) in the presence of H2O or O2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H2O purifies by a bottom-up mechanism while O2 purifies from the top-down. The simulation results presented here suggest that the chemisorption of dissolved O2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O2 and H2O. These results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.</description><subject>Chemisorption</subject><subject>Deposition</subject><subject>Deposits</subject><subject>Dissolution</subject><subject>NANOSCIENCE AND NANOTECHNOLOGY</subject><subject>Nanostructure</subject><subject>Oxidation</subject><subject>Purification</subject><subject>Simulation</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMo7rp68QdI8SRCNUnz6U3K-gEL60HPpZ0mGGmbNWlR_73dD_fsaWaYZ4Z35kXonOAbgjN9CxxWmBAtzAGaEiayVGPFDve5FBN0EuMHxphwkh2jCRWYKyn5FC3njYE--C7pys6vgq9M4rp6AFMn_tvVZe98d5eUSXTt0GyqxNukdmEcS7-C602yGoKzDjbNU3Rkyyaas12cobeH-Wv-lC6Wj8_5_SIFRlmfUlFhSoSUUgHTSktVg5UVQKUywbEkTIEATkxppRKlFVgZLqmyTBtWUZbN0OV2r4-9KyKMOuAdfNeNsgpCsaZ4DV1tofGuz8HEvmhdBNM0ZWf8EAsiidKZzMQ_UKE5UWJ86Iheb1EIPsZgbLEKri3DT0FwsTakyHn-sjFkPsIXu71D1Zp6j_45kP0CypKEsw</recordid><startdate>20150728</startdate><enddate>20150728</enddate><creator>Fowlkes, J D</creator><creator>Geier, B</creator><creator>Lewis, B B</creator><creator>Rack, P D</creator><creator>Stanford, M G</creator><creator>Winkler, R</creator><creator>Plank, H</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150728</creationdate><title>Electron nanoprobe induced oxidation: a simulation of direct-write purification</title><author>Fowlkes, J D ; Geier, B ; Lewis, B B ; Rack, P D ; Stanford, M G ; Winkler, R ; Plank, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-26b02167778c498978dcf7bccb836507148c6c51eaf786af608e5728f49e4b243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Chemisorption</topic><topic>Deposition</topic><topic>Deposits</topic><topic>Dissolution</topic><topic>NANOSCIENCE AND NANOTECHNOLOGY</topic><topic>Nanostructure</topic><topic>Oxidation</topic><topic>Purification</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fowlkes, J D</creatorcontrib><creatorcontrib>Geier, B</creatorcontrib><creatorcontrib>Lewis, B B</creatorcontrib><creatorcontrib>Rack, P D</creatorcontrib><creatorcontrib>Stanford, M G</creatorcontrib><creatorcontrib>Winkler, R</creatorcontrib><creatorcontrib>Plank, H</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fowlkes, J D</au><au>Geier, B</au><au>Lewis, B B</au><au>Rack, P D</au><au>Stanford, M G</au><au>Winkler, R</au><au>Plank, H</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron nanoprobe induced oxidation: a simulation of direct-write purification</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-07-28</date><risdate>2015</risdate><volume>17</volume><issue>28</issue><spage>18294</spage><epage>18304</epage><pages>18294-18304</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>Electron beam direct-write has recently taken a large step forward with the advent of methods to purify deposits. This development has opened the door for future direct-write device prototyping and editing. In one such approach, an additional beam scanning procedure removes carbonaceous impurities via oxidation from metal-carbon deposits (e.g., PtC5) in the presence of H2O or O2 after deposition. So far, critical aspects of the oxidation reaction remain unclear; experiments reveal clearly that electron stimulated oxidation drives the process yet it is not understood why H2O purifies by a bottom-up mechanism while O2 purifies from the top-down. The simulation results presented here suggest that the chemisorption of dissolved O2 at buried Pt nanoparticle surfaces controls purification in the top-down case while both the high relative solubility coupled with weak physisorption of H2O explains the bottom-up process. Crucial too is the role that the carbonaceous contaminant itself has on the dissolution and diffusion of O2 and H2O. These results pave the way for simulation driven experiments where (1) the transient densification of the deposit can be accounted for in the initial deposit design stage and (2) the deposition and purification steps can be combined.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>26058775</pmid><doi>10.1039/c5cp01196e</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2015-07, Vol.17 (28), p.18294-18304
issn 1463-9076
1463-9084
language eng
recordid cdi_osti_scitechconnect_1209204
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Chemisorption
Deposition
Deposits
Dissolution
NANOSCIENCE AND NANOTECHNOLOGY
Nanostructure
Oxidation
Purification
Simulation
title Electron nanoprobe induced oxidation: a simulation of direct-write purification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A54%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20nanoprobe%20induced%20oxidation:%20a%20simulation%20of%20direct-write%20purification&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Fowlkes,%20J%20D&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2015-07-28&rft.volume=17&rft.issue=28&rft.spage=18294&rft.epage=18304&rft.pages=18294-18304&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c5cp01196e&rft_dat=%3Cproquest_osti_%3E1695186463%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695186463&rft_id=info:pmid/26058775&rfr_iscdi=true