RACORO continental boundary layer cloud investigations: 3. Separation of parameterization biases single-column model CAM5 simulations of shallow cumulus
Climatically important low‐level clouds are commonly misrepresented in climate models. The FAst‐physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO ai...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Atmospheres 2015-06, Vol.120 (12), p.6015-6033 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6033 |
---|---|
container_issue | 12 |
container_start_page | 6015 |
container_title | Journal of geophysical research. Atmospheres |
container_volume | 120 |
creator | Lin, Wuyin Liu, Yangang Vogelmann, Andrew M. Fridlind, Ann Endo, Satoshi Song, Hua Feng, Sha Toto, Tami Li, Zhijin Zhang, Minghua |
description | Climatically important low‐level clouds are commonly misrepresented in climate models. The FAst‐physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary‐layer clouds. This paper focuses on using the single‐column Community Atmosphere Model version 5 (SCAM5) simulations of a multi‐day continental shallow cumulus case to identify specific parameterization causes of low‐cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In‐depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under‐produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over‐produce low‐level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large‐eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low‐cloud biases.
Key Points
Integrated SCM‐LES framework for the evaluation of cumulus scheme in CAM5
Large low‐level cloud biases in SCAM5 traced to insufficient simulated PBL TKE
Underrepresentation of shallow cumulus in SCAM5 distorts PBL cloud processes |
doi_str_mv | 10.1002/2014JD022524 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1201337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1718940983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5466-4c20edf8aaedb88588c58e23979dcc619098cfec172718f65a4fba7b9e62839e3</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhiNEJarSGz_AggsHUvwROza31S4sVC0rbfnozfI6k9bFsZc4oSy_hJ-Lt0EV4oDwxePx8772zBTFE4JPCMb0JcWkOl1gSjmtHhSHlAhVSqXEw_u4vnxUHKd0g_OSmFW8Oix-rmfz1XqFbAyDCxAG49EmjqEx_Q55s4MeWR_HBrnwDdLgrszgYkivEDtBF7A1_d0ZxRbt4w4G6N2PKbdxJkFCyYUrD6WNfuwC6mIDHs1n5zxfdKOf7Pb6dG28j7fIjjk9psfFQWt8guPf-1Hx8c3rD_O35dlq-W4-Oystr4QoK0sxNK00BpqNlFxKyyVQpmrVWCuIwkraFiypaU1kK7ip2o2pNwoElUwBOyqeTr4xV6eTdQPY69yNAHbQJDeVsTpDzydo28evY-6D7lyy4L0JEMekSfZWVX6K_QeKCceM4b3rs7_Qmzj2IVer88Dy_6RQe8MXE2X7mFIPrd72rsvj0QTr_eT1n5PPOJvwW-dh909Wny7XC04xE1lVTiqXBvh-rzL9Fy1qVnP9-f1Sf1rwy_MLKTRmvwCsJL8V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696288693</pqid></control><display><type>article</type><title>RACORO continental boundary layer cloud investigations: 3. Separation of parameterization biases single-column model CAM5 simulations of shallow cumulus</title><source>Wiley Online Library - AutoHoldings Journals</source><source>Wiley Open Access</source><source>Alma/SFX Local Collection</source><creator>Lin, Wuyin ; Liu, Yangang ; Vogelmann, Andrew M. ; Fridlind, Ann ; Endo, Satoshi ; Song, Hua ; Feng, Sha ; Toto, Tami ; Li, Zhijin ; Zhang, Minghua</creator><creatorcontrib>Lin, Wuyin ; Liu, Yangang ; Vogelmann, Andrew M. ; Fridlind, Ann ; Endo, Satoshi ; Song, Hua ; Feng, Sha ; Toto, Tami ; Li, Zhijin ; Zhang, Minghua ; Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><description>Climatically important low‐level clouds are commonly misrepresented in climate models. The FAst‐physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary‐layer clouds. This paper focuses on using the single‐column Community Atmosphere Model version 5 (SCAM5) simulations of a multi‐day continental shallow cumulus case to identify specific parameterization causes of low‐cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In‐depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under‐produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over‐produce low‐level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large‐eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low‐cloud biases.
Key Points
Integrated SCM‐LES framework for the evaluation of cumulus scheme in CAM5
Large low‐level cloud biases in SCAM5 traced to insufficient simulated PBL TKE
Underrepresentation of shallow cumulus in SCAM5 distorts PBL cloud processes</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2014JD022524</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Aircraft ; Boundary layer ; Boundary layers ; Climate models ; Clouds ; Computer simulation ; continental shallow cumulus ; Convection ; ENVIRONMENTAL SCIENCES ; Fluid flow ; Geophysics ; Marine ; Parametrization ; RACORO ; Radiation measurement ; Simulation ; single-column model ; Turbulence ; Turbulent flow</subject><ispartof>Journal of geophysical research. Atmospheres, 2015-06, Vol.120 (12), p.6015-6033</ispartof><rights>2015. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5466-4c20edf8aaedb88588c58e23979dcc619098cfec172718f65a4fba7b9e62839e3</citedby><cites>FETCH-LOGICAL-c5466-4c20edf8aaedb88588c58e23979dcc619098cfec172718f65a4fba7b9e62839e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JD022524$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JD022524$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,1428,27905,27906,45555,45556,46390,46814</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1201337$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Wuyin</creatorcontrib><creatorcontrib>Liu, Yangang</creatorcontrib><creatorcontrib>Vogelmann, Andrew M.</creatorcontrib><creatorcontrib>Fridlind, Ann</creatorcontrib><creatorcontrib>Endo, Satoshi</creatorcontrib><creatorcontrib>Song, Hua</creatorcontrib><creatorcontrib>Feng, Sha</creatorcontrib><creatorcontrib>Toto, Tami</creatorcontrib><creatorcontrib>Li, Zhijin</creatorcontrib><creatorcontrib>Zhang, Minghua</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><title>RACORO continental boundary layer cloud investigations: 3. Separation of parameterization biases single-column model CAM5 simulations of shallow cumulus</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>Climatically important low‐level clouds are commonly misrepresented in climate models. The FAst‐physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary‐layer clouds. This paper focuses on using the single‐column Community Atmosphere Model version 5 (SCAM5) simulations of a multi‐day continental shallow cumulus case to identify specific parameterization causes of low‐cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In‐depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under‐produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over‐produce low‐level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large‐eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low‐cloud biases.
Key Points
Integrated SCM‐LES framework for the evaluation of cumulus scheme in CAM5
Large low‐level cloud biases in SCAM5 traced to insufficient simulated PBL TKE
Underrepresentation of shallow cumulus in SCAM5 distorts PBL cloud processes</description><subject>Aircraft</subject><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Climate models</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>continental shallow cumulus</subject><subject>Convection</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Fluid flow</subject><subject>Geophysics</subject><subject>Marine</subject><subject>Parametrization</subject><subject>RACORO</subject><subject>Radiation measurement</subject><subject>Simulation</subject><subject>single-column model</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhiNEJarSGz_AggsHUvwROza31S4sVC0rbfnozfI6k9bFsZc4oSy_hJ-Lt0EV4oDwxePx8772zBTFE4JPCMb0JcWkOl1gSjmtHhSHlAhVSqXEw_u4vnxUHKd0g_OSmFW8Oix-rmfz1XqFbAyDCxAG49EmjqEx_Q55s4MeWR_HBrnwDdLgrszgYkivEDtBF7A1_d0ZxRbt4w4G6N2PKbdxJkFCyYUrD6WNfuwC6mIDHs1n5zxfdKOf7Pb6dG28j7fIjjk9psfFQWt8guPf-1Hx8c3rD_O35dlq-W4-Oystr4QoK0sxNK00BpqNlFxKyyVQpmrVWCuIwkraFiypaU1kK7ip2o2pNwoElUwBOyqeTr4xV6eTdQPY69yNAHbQJDeVsTpDzydo28evY-6D7lyy4L0JEMekSfZWVX6K_QeKCceM4b3rs7_Qmzj2IVer88Dy_6RQe8MXE2X7mFIPrd72rsvj0QTr_eT1n5PPOJvwW-dh909Wny7XC04xE1lVTiqXBvh-rzL9Fy1qVnP9-f1Sf1rwy_MLKTRmvwCsJL8V</recordid><startdate>20150627</startdate><enddate>20150627</enddate><creator>Lin, Wuyin</creator><creator>Liu, Yangang</creator><creator>Vogelmann, Andrew M.</creator><creator>Fridlind, Ann</creator><creator>Endo, Satoshi</creator><creator>Song, Hua</creator><creator>Feng, Sha</creator><creator>Toto, Tami</creator><creator>Li, Zhijin</creator><creator>Zhang, Minghua</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150627</creationdate><title>RACORO continental boundary layer cloud investigations: 3. Separation of parameterization biases single-column model CAM5 simulations of shallow cumulus</title><author>Lin, Wuyin ; Liu, Yangang ; Vogelmann, Andrew M. ; Fridlind, Ann ; Endo, Satoshi ; Song, Hua ; Feng, Sha ; Toto, Tami ; Li, Zhijin ; Zhang, Minghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5466-4c20edf8aaedb88588c58e23979dcc619098cfec172718f65a4fba7b9e62839e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Aircraft</topic><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Climate models</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>continental shallow cumulus</topic><topic>Convection</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Fluid flow</topic><topic>Geophysics</topic><topic>Marine</topic><topic>Parametrization</topic><topic>RACORO</topic><topic>Radiation measurement</topic><topic>Simulation</topic><topic>single-column model</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Wuyin</creatorcontrib><creatorcontrib>Liu, Yangang</creatorcontrib><creatorcontrib>Vogelmann, Andrew M.</creatorcontrib><creatorcontrib>Fridlind, Ann</creatorcontrib><creatorcontrib>Endo, Satoshi</creatorcontrib><creatorcontrib>Song, Hua</creatorcontrib><creatorcontrib>Feng, Sha</creatorcontrib><creatorcontrib>Toto, Tami</creatorcontrib><creatorcontrib>Li, Zhijin</creatorcontrib><creatorcontrib>Zhang, Minghua</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL), Upton, NY (United States)</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Wuyin</au><au>Liu, Yangang</au><au>Vogelmann, Andrew M.</au><au>Fridlind, Ann</au><au>Endo, Satoshi</au><au>Song, Hua</au><au>Feng, Sha</au><au>Toto, Tami</au><au>Li, Zhijin</au><au>Zhang, Minghua</au><aucorp>Brookhaven National Laboratory (BNL), Upton, NY (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RACORO continental boundary layer cloud investigations: 3. Separation of parameterization biases single-column model CAM5 simulations of shallow cumulus</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2015-06-27</date><risdate>2015</risdate><volume>120</volume><issue>12</issue><spage>6015</spage><epage>6033</epage><pages>6015-6033</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Climatically important low‐level clouds are commonly misrepresented in climate models. The FAst‐physics System TEstbed and Research (FASTER) Project has constructed case studies from the Atmospheric Radiation Measurement Climate Research Facility's Southern Great Plain site during the RACORO aircraft campaign to facilitate research on model representation of boundary‐layer clouds. This paper focuses on using the single‐column Community Atmosphere Model version 5 (SCAM5) simulations of a multi‐day continental shallow cumulus case to identify specific parameterization causes of low‐cloud biases. Consistent model biases among the simulations driven by a set of alternative forcings suggest that uncertainty in the forcing plays only a relatively minor role. In‐depth analysis reveals that the model's shallow cumulus convection scheme tends to significantly under‐produce clouds during the times when shallow cumuli exist in the observations, while the deep convective and stratiform cloud schemes significantly over‐produce low‐level clouds throughout the day. The links between model biases and the underlying assumptions of the shallow cumulus scheme are further diagnosed with the aid of large‐eddy simulations and aircraft measurements, and by suppressing the triggering of the deep convection scheme. It is found that the weak boundary layer turbulence simulated is directly responsible for the weak cumulus activity and the simulated boundary layer stratiform clouds. Increased vertical and temporal resolutions are shown to lead to stronger boundary layer turbulence and reduction of low‐cloud biases.
Key Points
Integrated SCM‐LES framework for the evaluation of cumulus scheme in CAM5
Large low‐level cloud biases in SCAM5 traced to insufficient simulated PBL TKE
Underrepresentation of shallow cumulus in SCAM5 distorts PBL cloud processes</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JD022524</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-897X |
ispartof | Journal of geophysical research. Atmospheres, 2015-06, Vol.120 (12), p.6015-6033 |
issn | 2169-897X 2169-8996 |
language | eng |
recordid | cdi_osti_scitechconnect_1201337 |
source | Wiley Online Library - AutoHoldings Journals; Wiley Open Access; Alma/SFX Local Collection |
subjects | Aircraft Boundary layer Boundary layers Climate models Clouds Computer simulation continental shallow cumulus Convection ENVIRONMENTAL SCIENCES Fluid flow Geophysics Marine Parametrization RACORO Radiation measurement Simulation single-column model Turbulence Turbulent flow |
title | RACORO continental boundary layer cloud investigations: 3. Separation of parameterization biases single-column model CAM5 simulations of shallow cumulus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A16%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RACORO%20continental%20boundary%20layer%20cloud%20investigations:%203.%20Separation%20of%20parameterization%20biases%20single-column%20model%20CAM5%20simulations%20of%20shallow%20cumulus&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Lin,%20Wuyin&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL),%20Upton,%20NY%20(United%20States)&rft.date=2015-06-27&rft.volume=120&rft.issue=12&rft.spage=6015&rft.epage=6033&rft.pages=6015-6033&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2014JD022524&rft_dat=%3Cproquest_osti_%3E1718940983%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696288693&rft_id=info:pmid/&rfr_iscdi=true |