Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition
Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca₁.₉Sr₀.₁RuO₄, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2007-10, Vol.318 (5850), p.615-619 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 619 |
---|---|
container_issue | 5850 |
container_start_page | 615 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 318 |
creator | Moore, R.G Zhang, Jiandi Nascimento, V.B Jin, R Guo, Jiandong Wang, G.T Fang, Z Mandrus, D Plummer, E.W |
description | Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca₁.₉Sr₀.₁RuO₄, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also on cooling but without a simultaneous lattice distortion. The broken translational symmetry at the surface causes a compressional stress that results in a 150% increase in the buckling of the Ca/Sr-O surface plane as compared to the bulk. The Ca/Sr ions are pulled toward the bulk, which stabilizes a phase more amenable to a Mott insulator ground state than does the bulk structure and also energetically prohibits the structural transition that accompanies the bulk MIT. |
doi_str_mv | 10.1126/science.1145374 |
format | Article |
fullrecord | <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1201280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20051451</jstor_id><sourcerecordid>20051451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-c876e0b6f278bec5baa71c6cb009c61d8a366764c7b8ad4965701c7e8a7f3eab3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EotvCmRMQIYE4NNQf8UeOqCqlUiuQuj1bzqwDWXnj1nYO_e-ZbaLujZNlzW_ezJtHyDtGvzHG1VmGwY_g8dNIoZsXZMVoK-uWU_GSrCgVqjZUyyNynPOWUqy14jU5YrpVXEq1Ipe3U-od-HrthhCT35xWv6fkw2N1ETyUFMcBTqubWEp144sLdYn11Zin4EpM1Tq5MQ9liOMb8qp3Ifu3y3tC7n5crM9_1te_Lq_Ov1_XIGVTajBaedqpnmvTeZCdc5qBgg5XA8U2xgmltGpAd8ZtmlZJTRlob5zuhXedOCGfZt2Yy2DRfvHwF-I44rKWccq4oQh9maH7FB8mn4vdDRl8CG70ccpWmUa0XDAEv_4XZNRw1jKUPAx-RrdxSiN6tZwJ2VKjJEJnMwQp5px8b-_TsHPpEZXsPjC7BGaXwLDjwyI7dTu_OfBLQgh8XgCXwYUeLw5DPnD7qOWT5_czt82YzHOdUypx1N7qx7neu2jdn4Qad7d4L0H3Hile5B-FYbAq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213590865</pqid></control><display><type>article</type><title>Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Moore, R.G ; Zhang, Jiandi ; Nascimento, V.B ; Jin, R ; Guo, Jiandong ; Wang, G.T ; Fang, Z ; Mandrus, D ; Plummer, E.W</creator><creatorcontrib>Moore, R.G ; Zhang, Jiandi ; Nascimento, V.B ; Jin, R ; Guo, Jiandong ; Wang, G.T ; Fang, Z ; Mandrus, D ; Plummer, E.W ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca₁.₉Sr₀.₁RuO₄, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also on cooling but without a simultaneous lattice distortion. The broken translational symmetry at the surface causes a compressional stress that results in a 150% increase in the buckling of the Ca/Sr-O surface plane as compared to the bulk. The Ca/Sr ions are pulled toward the bulk, which stabilizes a phase more amenable to a Mott insulator ground state than does the bulk structure and also energetically prohibits the structural transition that accompanies the bulk MIT.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1145374</identifier><identifier>PMID: 17962556</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Buckling ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cooling ; Crystal lattices ; Crystallography ; Distortion ; Electrical phases ; Electron states ; Electronic structure ; Electronic transport in condensed matter ; Electronics ; Energy gaps ; Exact sciences and technology ; Insulators ; Lattices ; Materials science ; Metal-insulator transition ; Metal-insulator transitions and other electronic transitions ; Metals ; Mineralogy ; Mixed conductivity and conductivity transitions ; Octahedrons ; Phase transformations ; Phonons ; Physics ; Strontium ; Surface temperature ; Temperature ; Transition temperature</subject><ispartof>Science (American Association for the Advancement of Science), 2007-10, Vol.318 (5850), p.615-619</ispartof><rights>Copyright 2007 American Association for the Advancement of Science</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2007, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-c876e0b6f278bec5baa71c6cb009c61d8a366764c7b8ad4965701c7e8a7f3eab3</citedby><cites>FETCH-LOGICAL-c554t-c876e0b6f278bec5baa71c6cb009c61d8a366764c7b8ad4965701c7e8a7f3eab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20051451$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20051451$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19203580$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17962556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1201280$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, R.G</creatorcontrib><creatorcontrib>Zhang, Jiandi</creatorcontrib><creatorcontrib>Nascimento, V.B</creatorcontrib><creatorcontrib>Jin, R</creatorcontrib><creatorcontrib>Guo, Jiandong</creatorcontrib><creatorcontrib>Wang, G.T</creatorcontrib><creatorcontrib>Fang, Z</creatorcontrib><creatorcontrib>Mandrus, D</creatorcontrib><creatorcontrib>Plummer, E.W</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca₁.₉Sr₀.₁RuO₄, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also on cooling but without a simultaneous lattice distortion. The broken translational symmetry at the surface causes a compressional stress that results in a 150% increase in the buckling of the Ca/Sr-O surface plane as compared to the bulk. The Ca/Sr ions are pulled toward the bulk, which stabilizes a phase more amenable to a Mott insulator ground state than does the bulk structure and also energetically prohibits the structural transition that accompanies the bulk MIT.</description><subject>Buckling</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cooling</subject><subject>Crystal lattices</subject><subject>Crystallography</subject><subject>Distortion</subject><subject>Electrical phases</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Electronic transport in condensed matter</subject><subject>Electronics</subject><subject>Energy gaps</subject><subject>Exact sciences and technology</subject><subject>Insulators</subject><subject>Lattices</subject><subject>Materials science</subject><subject>Metal-insulator transition</subject><subject>Metal-insulator transitions and other electronic transitions</subject><subject>Metals</subject><subject>Mineralogy</subject><subject>Mixed conductivity and conductivity transitions</subject><subject>Octahedrons</subject><subject>Phase transformations</subject><subject>Phonons</subject><subject>Physics</subject><subject>Strontium</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Transition temperature</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxS0EotvCmRMQIYE4NNQf8UeOqCqlUiuQuj1bzqwDWXnj1nYO_e-ZbaLujZNlzW_ezJtHyDtGvzHG1VmGwY_g8dNIoZsXZMVoK-uWU_GSrCgVqjZUyyNynPOWUqy14jU5YrpVXEq1Ipe3U-od-HrthhCT35xWv6fkw2N1ETyUFMcBTqubWEp144sLdYn11Zin4EpM1Tq5MQ9liOMb8qp3Ifu3y3tC7n5crM9_1te_Lq_Ov1_XIGVTajBaedqpnmvTeZCdc5qBgg5XA8U2xgmltGpAd8ZtmlZJTRlob5zuhXedOCGfZt2Yy2DRfvHwF-I44rKWccq4oQh9maH7FB8mn4vdDRl8CG70ccpWmUa0XDAEv_4XZNRw1jKUPAx-RrdxSiN6tZwJ2VKjJEJnMwQp5px8b-_TsHPpEZXsPjC7BGaXwLDjwyI7dTu_OfBLQgh8XgCXwYUeLw5DPnD7qOWT5_czt82YzHOdUypx1N7qx7neu2jdn4Qad7d4L0H3Hile5B-FYbAq</recordid><startdate>20071026</startdate><enddate>20071026</enddate><creator>Moore, R.G</creator><creator>Zhang, Jiandi</creator><creator>Nascimento, V.B</creator><creator>Jin, R</creator><creator>Guo, Jiandong</creator><creator>Wang, G.T</creator><creator>Fang, Z</creator><creator>Mandrus, D</creator><creator>Plummer, E.W</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20071026</creationdate><title>Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition</title><author>Moore, R.G ; Zhang, Jiandi ; Nascimento, V.B ; Jin, R ; Guo, Jiandong ; Wang, G.T ; Fang, Z ; Mandrus, D ; Plummer, E.W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-c876e0b6f278bec5baa71c6cb009c61d8a366764c7b8ad4965701c7e8a7f3eab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Buckling</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cooling</topic><topic>Crystal lattices</topic><topic>Crystallography</topic><topic>Distortion</topic><topic>Electrical phases</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Electronic transport in condensed matter</topic><topic>Electronics</topic><topic>Energy gaps</topic><topic>Exact sciences and technology</topic><topic>Insulators</topic><topic>Lattices</topic><topic>Materials science</topic><topic>Metal-insulator transition</topic><topic>Metal-insulator transitions and other electronic transitions</topic><topic>Metals</topic><topic>Mineralogy</topic><topic>Mixed conductivity and conductivity transitions</topic><topic>Octahedrons</topic><topic>Phase transformations</topic><topic>Phonons</topic><topic>Physics</topic><topic>Strontium</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, R.G</creatorcontrib><creatorcontrib>Zhang, Jiandi</creatorcontrib><creatorcontrib>Nascimento, V.B</creatorcontrib><creatorcontrib>Jin, R</creatorcontrib><creatorcontrib>Guo, Jiandong</creatorcontrib><creatorcontrib>Wang, G.T</creatorcontrib><creatorcontrib>Fang, Z</creatorcontrib><creatorcontrib>Mandrus, D</creatorcontrib><creatorcontrib>Plummer, E.W</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, R.G</au><au>Zhang, Jiandi</au><au>Nascimento, V.B</au><au>Jin, R</au><au>Guo, Jiandong</au><au>Wang, G.T</au><au>Fang, Z</au><au>Mandrus, D</au><au>Plummer, E.W</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2007-10-26</date><risdate>2007</risdate><volume>318</volume><issue>5850</issue><spage>615</spage><epage>619</epage><pages>615-619</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca₁.₉Sr₀.₁RuO₄, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also on cooling but without a simultaneous lattice distortion. The broken translational symmetry at the surface causes a compressional stress that results in a 150% increase in the buckling of the Ca/Sr-O surface plane as compared to the bulk. The Ca/Sr ions are pulled toward the bulk, which stabilizes a phase more amenable to a Mott insulator ground state than does the bulk structure and also energetically prohibits the structural transition that accompanies the bulk MIT.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>17962556</pmid><doi>10.1126/science.1145374</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2007-10, Vol.318 (5850), p.615-619 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1201280 |
source | American Association for the Advancement of Science; Jstor Complete Legacy |
subjects | Buckling Condensed matter: electronic structure, electrical, magnetic, and optical properties Cooling Crystal lattices Crystallography Distortion Electrical phases Electron states Electronic structure Electronic transport in condensed matter Electronics Energy gaps Exact sciences and technology Insulators Lattices Materials science Metal-insulator transition Metal-insulator transitions and other electronic transitions Metals Mineralogy Mixed conductivity and conductivity transitions Octahedrons Phase transformations Phonons Physics Strontium Surface temperature Temperature Transition temperature |
title | Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Tailored,%20Purely%20Electronic,%20Mott%20Metal-to-Insulator%20Transition&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Moore,%20R.G&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2007-10-26&rft.volume=318&rft.issue=5850&rft.spage=615&rft.epage=619&rft.pages=615-619&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1145374&rft_dat=%3Cjstor_osti_%3E20051451%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213590865&rft_id=info:pmid/17962556&rft_jstor_id=20051451&rfr_iscdi=true |