Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition

Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca₁.₉Sr₀.₁RuO₄, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2007-10, Vol.318 (5850), p.615-619
Hauptverfasser: Moore, R.G, Zhang, Jiandi, Nascimento, V.B, Jin, R, Guo, Jiandong, Wang, G.T, Fang, Z, Mandrus, D, Plummer, E.W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 619
container_issue 5850
container_start_page 615
container_title Science (American Association for the Advancement of Science)
container_volume 318
creator Moore, R.G
Zhang, Jiandi
Nascimento, V.B
Jin, R
Guo, Jiandong
Wang, G.T
Fang, Z
Mandrus, D
Plummer, E.W
description Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca₁.₉Sr₀.₁RuO₄, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also on cooling but without a simultaneous lattice distortion. The broken translational symmetry at the surface causes a compressional stress that results in a 150% increase in the buckling of the Ca/Sr-O surface plane as compared to the bulk. The Ca/Sr ions are pulled toward the bulk, which stabilizes a phase more amenable to a Mott insulator ground state than does the bulk structure and also energetically prohibits the structural transition that accompanies the bulk MIT.
doi_str_mv 10.1126/science.1145374
format Article
fullrecord <record><control><sourceid>jstor_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1201280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20051451</jstor_id><sourcerecordid>20051451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-c876e0b6f278bec5baa71c6cb009c61d8a366764c7b8ad4965701c7e8a7f3eab3</originalsourceid><addsrcrecordid>eNp9kc1v1DAQxS0EotvCmRMQIYE4NNQf8UeOqCqlUiuQuj1bzqwDWXnj1nYO_e-ZbaLujZNlzW_ezJtHyDtGvzHG1VmGwY_g8dNIoZsXZMVoK-uWU_GSrCgVqjZUyyNynPOWUqy14jU5YrpVXEq1Ipe3U-od-HrthhCT35xWv6fkw2N1ETyUFMcBTqubWEp144sLdYn11Zin4EpM1Tq5MQ9liOMb8qp3Ifu3y3tC7n5crM9_1te_Lq_Ov1_XIGVTajBaedqpnmvTeZCdc5qBgg5XA8U2xgmltGpAd8ZtmlZJTRlob5zuhXedOCGfZt2Yy2DRfvHwF-I44rKWccq4oQh9maH7FB8mn4vdDRl8CG70ccpWmUa0XDAEv_4XZNRw1jKUPAx-RrdxSiN6tZwJ2VKjJEJnMwQp5px8b-_TsHPpEZXsPjC7BGaXwLDjwyI7dTu_OfBLQgh8XgCXwYUeLw5DPnD7qOWT5_czt82YzHOdUypx1N7qx7neu2jdn4Qad7d4L0H3Hile5B-FYbAq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213590865</pqid></control><display><type>article</type><title>Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><creator>Moore, R.G ; Zhang, Jiandi ; Nascimento, V.B ; Jin, R ; Guo, Jiandong ; Wang, G.T ; Fang, Z ; Mandrus, D ; Plummer, E.W</creator><creatorcontrib>Moore, R.G ; Zhang, Jiandi ; Nascimento, V.B ; Jin, R ; Guo, Jiandong ; Wang, G.T ; Fang, Z ; Mandrus, D ; Plummer, E.W ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca₁.₉Sr₀.₁RuO₄, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also on cooling but without a simultaneous lattice distortion. The broken translational symmetry at the surface causes a compressional stress that results in a 150% increase in the buckling of the Ca/Sr-O surface plane as compared to the bulk. The Ca/Sr ions are pulled toward the bulk, which stabilizes a phase more amenable to a Mott insulator ground state than does the bulk structure and also energetically prohibits the structural transition that accompanies the bulk MIT.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1145374</identifier><identifier>PMID: 17962556</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Buckling ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Cooling ; Crystal lattices ; Crystallography ; Distortion ; Electrical phases ; Electron states ; Electronic structure ; Electronic transport in condensed matter ; Electronics ; Energy gaps ; Exact sciences and technology ; Insulators ; Lattices ; Materials science ; Metal-insulator transition ; Metal-insulator transitions and other electronic transitions ; Metals ; Mineralogy ; Mixed conductivity and conductivity transitions ; Octahedrons ; Phase transformations ; Phonons ; Physics ; Strontium ; Surface temperature ; Temperature ; Transition temperature</subject><ispartof>Science (American Association for the Advancement of Science), 2007-10, Vol.318 (5850), p.615-619</ispartof><rights>Copyright 2007 American Association for the Advancement of Science</rights><rights>2008 INIST-CNRS</rights><rights>Copyright © 2007, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-c876e0b6f278bec5baa71c6cb009c61d8a366764c7b8ad4965701c7e8a7f3eab3</citedby><cites>FETCH-LOGICAL-c554t-c876e0b6f278bec5baa71c6cb009c61d8a366764c7b8ad4965701c7e8a7f3eab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20051451$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20051451$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27903,27904,57995,58228</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19203580$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17962556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1201280$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Moore, R.G</creatorcontrib><creatorcontrib>Zhang, Jiandi</creatorcontrib><creatorcontrib>Nascimento, V.B</creatorcontrib><creatorcontrib>Jin, R</creatorcontrib><creatorcontrib>Guo, Jiandong</creatorcontrib><creatorcontrib>Wang, G.T</creatorcontrib><creatorcontrib>Fang, Z</creatorcontrib><creatorcontrib>Mandrus, D</creatorcontrib><creatorcontrib>Plummer, E.W</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca₁.₉Sr₀.₁RuO₄, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also on cooling but without a simultaneous lattice distortion. The broken translational symmetry at the surface causes a compressional stress that results in a 150% increase in the buckling of the Ca/Sr-O surface plane as compared to the bulk. The Ca/Sr ions are pulled toward the bulk, which stabilizes a phase more amenable to a Mott insulator ground state than does the bulk structure and also energetically prohibits the structural transition that accompanies the bulk MIT.</description><subject>Buckling</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Cooling</subject><subject>Crystal lattices</subject><subject>Crystallography</subject><subject>Distortion</subject><subject>Electrical phases</subject><subject>Electron states</subject><subject>Electronic structure</subject><subject>Electronic transport in condensed matter</subject><subject>Electronics</subject><subject>Energy gaps</subject><subject>Exact sciences and technology</subject><subject>Insulators</subject><subject>Lattices</subject><subject>Materials science</subject><subject>Metal-insulator transition</subject><subject>Metal-insulator transitions and other electronic transitions</subject><subject>Metals</subject><subject>Mineralogy</subject><subject>Mixed conductivity and conductivity transitions</subject><subject>Octahedrons</subject><subject>Phase transformations</subject><subject>Phonons</subject><subject>Physics</subject><subject>Strontium</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Transition temperature</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNp9kc1v1DAQxS0EotvCmRMQIYE4NNQf8UeOqCqlUiuQuj1bzqwDWXnj1nYO_e-ZbaLujZNlzW_ezJtHyDtGvzHG1VmGwY_g8dNIoZsXZMVoK-uWU_GSrCgVqjZUyyNynPOWUqy14jU5YrpVXEq1Ipe3U-od-HrthhCT35xWv6fkw2N1ETyUFMcBTqubWEp144sLdYn11Zin4EpM1Tq5MQ9liOMb8qp3Ifu3y3tC7n5crM9_1te_Lq_Ov1_XIGVTajBaedqpnmvTeZCdc5qBgg5XA8U2xgmltGpAd8ZtmlZJTRlob5zuhXedOCGfZt2Yy2DRfvHwF-I44rKWccq4oQh9maH7FB8mn4vdDRl8CG70ccpWmUa0XDAEv_4XZNRw1jKUPAx-RrdxSiN6tZwJ2VKjJEJnMwQp5px8b-_TsHPpEZXsPjC7BGaXwLDjwyI7dTu_OfBLQgh8XgCXwYUeLw5DPnD7qOWT5_czt82YzHOdUypx1N7qx7neu2jdn4Qad7d4L0H3Hile5B-FYbAq</recordid><startdate>20071026</startdate><enddate>20071026</enddate><creator>Moore, R.G</creator><creator>Zhang, Jiandi</creator><creator>Nascimento, V.B</creator><creator>Jin, R</creator><creator>Guo, Jiandong</creator><creator>Wang, G.T</creator><creator>Fang, Z</creator><creator>Mandrus, D</creator><creator>Plummer, E.W</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20071026</creationdate><title>Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition</title><author>Moore, R.G ; Zhang, Jiandi ; Nascimento, V.B ; Jin, R ; Guo, Jiandong ; Wang, G.T ; Fang, Z ; Mandrus, D ; Plummer, E.W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-c876e0b6f278bec5baa71c6cb009c61d8a366764c7b8ad4965701c7e8a7f3eab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Buckling</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Cooling</topic><topic>Crystal lattices</topic><topic>Crystallography</topic><topic>Distortion</topic><topic>Electrical phases</topic><topic>Electron states</topic><topic>Electronic structure</topic><topic>Electronic transport in condensed matter</topic><topic>Electronics</topic><topic>Energy gaps</topic><topic>Exact sciences and technology</topic><topic>Insulators</topic><topic>Lattices</topic><topic>Materials science</topic><topic>Metal-insulator transition</topic><topic>Metal-insulator transitions and other electronic transitions</topic><topic>Metals</topic><topic>Mineralogy</topic><topic>Mixed conductivity and conductivity transitions</topic><topic>Octahedrons</topic><topic>Phase transformations</topic><topic>Phonons</topic><topic>Physics</topic><topic>Strontium</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Transition temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moore, R.G</creatorcontrib><creatorcontrib>Zhang, Jiandi</creatorcontrib><creatorcontrib>Nascimento, V.B</creatorcontrib><creatorcontrib>Jin, R</creatorcontrib><creatorcontrib>Guo, Jiandong</creatorcontrib><creatorcontrib>Wang, G.T</creatorcontrib><creatorcontrib>Fang, Z</creatorcontrib><creatorcontrib>Mandrus, D</creatorcontrib><creatorcontrib>Plummer, E.W</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moore, R.G</au><au>Zhang, Jiandi</au><au>Nascimento, V.B</au><au>Jin, R</au><au>Guo, Jiandong</au><au>Wang, G.T</au><au>Fang, Z</au><au>Mandrus, D</au><au>Plummer, E.W</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2007-10-26</date><risdate>2007</risdate><volume>318</volume><issue>5850</issue><spage>615</spage><epage>619</epage><pages>615-619</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca₁.₉Sr₀.₁RuO₄, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also on cooling but without a simultaneous lattice distortion. The broken translational symmetry at the surface causes a compressional stress that results in a 150% increase in the buckling of the Ca/Sr-O surface plane as compared to the bulk. The Ca/Sr ions are pulled toward the bulk, which stabilizes a phase more amenable to a Mott insulator ground state than does the bulk structure and also energetically prohibits the structural transition that accompanies the bulk MIT.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>17962556</pmid><doi>10.1126/science.1145374</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2007-10, Vol.318 (5850), p.615-619
issn 0036-8075
1095-9203
language eng
recordid cdi_osti_scitechconnect_1201280
source American Association for the Advancement of Science; Jstor Complete Legacy
subjects Buckling
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Cooling
Crystal lattices
Crystallography
Distortion
Electrical phases
Electron states
Electronic structure
Electronic transport in condensed matter
Electronics
Energy gaps
Exact sciences and technology
Insulators
Lattices
Materials science
Metal-insulator transition
Metal-insulator transitions and other electronic transitions
Metals
Mineralogy
Mixed conductivity and conductivity transitions
Octahedrons
Phase transformations
Phonons
Physics
Strontium
Surface temperature
Temperature
Transition temperature
title Surface-Tailored, Purely Electronic, Mott Metal-to-Insulator Transition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T07%3A02%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface-Tailored,%20Purely%20Electronic,%20Mott%20Metal-to-Insulator%20Transition&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Moore,%20R.G&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2007-10-26&rft.volume=318&rft.issue=5850&rft.spage=615&rft.epage=619&rft.pages=615-619&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1145374&rft_dat=%3Cjstor_osti_%3E20051451%3C/jstor_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213590865&rft_id=info:pmid/17962556&rft_jstor_id=20051451&rfr_iscdi=true