Adjoint-based deviational Monte Carlo methods for phonon transport calculations

In the field of linear transport, adjoint formulations exploit linearity to derive powerful reciprocity relations between a variety of quantities of interest. In this paper, we develop an adjoint formulation of the linearized Boltzmann transport equation for phonon transport. We use this formulation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2015-06, Vol.91 (23), Article 235321
Hauptverfasser: Péraud, Jean-Philippe M., Hadjiconstantinou, Nicolas G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page
container_title Physical review. B
container_volume 91
creator Péraud, Jean-Philippe M.
Hadjiconstantinou, Nicolas G.
description In the field of linear transport, adjoint formulations exploit linearity to derive powerful reciprocity relations between a variety of quantities of interest. In this paper, we develop an adjoint formulation of the linearized Boltzmann transport equation for phonon transport. We use this formulation for accelerating deviational Monte Carlo simulations of complex, multiscale problems. Benefits include significant computational savings via direct variance reduction, or by enabling formulations which allow more efficient use of computational resources, such as formulations which provide high resolution in a particular phase-space dimension (e.g., spectral). We show that the proposed adjoint-based methods are particularly well suited to problems involving a wide range of length scales (e.g., nanometers to hundreds of microns) and lead to computational methods that can calculate quantities of interest with a cost that is independent of the system characteristic length scale, thus removing the traditional stiffness of kinetic descriptions. Applications to problems of current interest, such as simulation of transient thermoreflectance experiments or spectrally resolved calculation of the effective thermal conductivity of nanostructured materials, are presented and discussed in detail.
doi_str_mv 10.1103/PhysRevB.91.235321
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1198571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786205381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-3c401df2b4408b14fb999512104d3b3fba275fb7a83d9e7ef263497dac227eec3</originalsourceid><addsrcrecordid>eNo1kF1LwzAUhosoOKd_wKvglTedOUm6NJdz-AWTiSh4F9IkpR1dUpNssH9vZ_XqnAPPeXl5suwa8AwA07u35hDf7f5-JmBGaEEJnGQTKAqcD9fX6bBjUeYYCJxnFzFuMAYmGJlk64XZ-NalvFLRGmTsvlWp9U516NW7ZNFShc6jrU2NNxHVPqC-8c47lIJysfchIa06vet-3-JldlarLtqrvznNPh8fPpbP-Wr99LJcrHLNgKecaobB1KRiDJcVsLoSQhRDPcwMrWhdKcKLuuKqpEZYbmsyp0xwozQh3FpNp9nNmOtjamXUbbK60d45q5MEEGXBYYBuR6gP_ntnY5LbNmrbdcpZv4sSeDknuKDlESUjqoOPMdha9qHdqnCQgOVRsfxXLAXIUTH9AUp0cYY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786205381</pqid></control><display><type>article</type><title>Adjoint-based deviational Monte Carlo methods for phonon transport calculations</title><source>American Physical Society Journals</source><creator>Péraud, Jean-Philippe M. ; Hadjiconstantinou, Nicolas G.</creator><creatorcontrib>Péraud, Jean-Philippe M. ; Hadjiconstantinou, Nicolas G.</creatorcontrib><description>In the field of linear transport, adjoint formulations exploit linearity to derive powerful reciprocity relations between a variety of quantities of interest. In this paper, we develop an adjoint formulation of the linearized Boltzmann transport equation for phonon transport. We use this formulation for accelerating deviational Monte Carlo simulations of complex, multiscale problems. Benefits include significant computational savings via direct variance reduction, or by enabling formulations which allow more efficient use of computational resources, such as formulations which provide high resolution in a particular phase-space dimension (e.g., spectral). We show that the proposed adjoint-based methods are particularly well suited to problems involving a wide range of length scales (e.g., nanometers to hundreds of microns) and lead to computational methods that can calculate quantities of interest with a cost that is independent of the system characteristic length scale, thus removing the traditional stiffness of kinetic descriptions. Applications to problems of current interest, such as simulation of transient thermoreflectance experiments or spectrally resolved calculation of the effective thermal conductivity of nanostructured materials, are presented and discussed in detail.</description><identifier>ISSN: 1098-0121</identifier><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 1550-235X</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.91.235321</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Boltzmann transport equation ; Computation ; Computer simulation ; Formulations ; Mathematical analysis ; Monte Carlo methods ; Phonons ; Transport</subject><ispartof>Physical review. B, 2015-06, Vol.91 (23), Article 235321</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-3c401df2b4408b14fb999512104d3b3fba275fb7a83d9e7ef263497dac227eec3</citedby><cites>FETCH-LOGICAL-c417t-3c401df2b4408b14fb999512104d3b3fba275fb7a83d9e7ef263497dac227eec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1198571$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Péraud, Jean-Philippe M.</creatorcontrib><creatorcontrib>Hadjiconstantinou, Nicolas G.</creatorcontrib><title>Adjoint-based deviational Monte Carlo methods for phonon transport calculations</title><title>Physical review. B</title><description>In the field of linear transport, adjoint formulations exploit linearity to derive powerful reciprocity relations between a variety of quantities of interest. In this paper, we develop an adjoint formulation of the linearized Boltzmann transport equation for phonon transport. We use this formulation for accelerating deviational Monte Carlo simulations of complex, multiscale problems. Benefits include significant computational savings via direct variance reduction, or by enabling formulations which allow more efficient use of computational resources, such as formulations which provide high resolution in a particular phase-space dimension (e.g., spectral). We show that the proposed adjoint-based methods are particularly well suited to problems involving a wide range of length scales (e.g., nanometers to hundreds of microns) and lead to computational methods that can calculate quantities of interest with a cost that is independent of the system characteristic length scale, thus removing the traditional stiffness of kinetic descriptions. Applications to problems of current interest, such as simulation of transient thermoreflectance experiments or spectrally resolved calculation of the effective thermal conductivity of nanostructured materials, are presented and discussed in detail.</description><subject>Boltzmann transport equation</subject><subject>Computation</subject><subject>Computer simulation</subject><subject>Formulations</subject><subject>Mathematical analysis</subject><subject>Monte Carlo methods</subject><subject>Phonons</subject><subject>Transport</subject><issn>1098-0121</issn><issn>2469-9950</issn><issn>1550-235X</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo1kF1LwzAUhosoOKd_wKvglTedOUm6NJdz-AWTiSh4F9IkpR1dUpNssH9vZ_XqnAPPeXl5suwa8AwA07u35hDf7f5-JmBGaEEJnGQTKAqcD9fX6bBjUeYYCJxnFzFuMAYmGJlk64XZ-NalvFLRGmTsvlWp9U516NW7ZNFShc6jrU2NNxHVPqC-8c47lIJysfchIa06vet-3-JldlarLtqrvznNPh8fPpbP-Wr99LJcrHLNgKecaobB1KRiDJcVsLoSQhRDPcwMrWhdKcKLuuKqpEZYbmsyp0xwozQh3FpNp9nNmOtjamXUbbK60d45q5MEEGXBYYBuR6gP_ntnY5LbNmrbdcpZv4sSeDknuKDlESUjqoOPMdha9qHdqnCQgOVRsfxXLAXIUTH9AUp0cYY</recordid><startdate>20150630</startdate><enddate>20150630</enddate><creator>Péraud, Jean-Philippe M.</creator><creator>Hadjiconstantinou, Nicolas G.</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20150630</creationdate><title>Adjoint-based deviational Monte Carlo methods for phonon transport calculations</title><author>Péraud, Jean-Philippe M. ; Hadjiconstantinou, Nicolas G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-3c401df2b4408b14fb999512104d3b3fba275fb7a83d9e7ef263497dac227eec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boltzmann transport equation</topic><topic>Computation</topic><topic>Computer simulation</topic><topic>Formulations</topic><topic>Mathematical analysis</topic><topic>Monte Carlo methods</topic><topic>Phonons</topic><topic>Transport</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Péraud, Jean-Philippe M.</creatorcontrib><creatorcontrib>Hadjiconstantinou, Nicolas G.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Péraud, Jean-Philippe M.</au><au>Hadjiconstantinou, Nicolas G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjoint-based deviational Monte Carlo methods for phonon transport calculations</atitle><jtitle>Physical review. B</jtitle><date>2015-06-30</date><risdate>2015</risdate><volume>91</volume><issue>23</issue><artnum>235321</artnum><issn>1098-0121</issn><issn>2469-9950</issn><eissn>1550-235X</eissn><eissn>2469-9969</eissn><abstract>In the field of linear transport, adjoint formulations exploit linearity to derive powerful reciprocity relations between a variety of quantities of interest. In this paper, we develop an adjoint formulation of the linearized Boltzmann transport equation for phonon transport. We use this formulation for accelerating deviational Monte Carlo simulations of complex, multiscale problems. Benefits include significant computational savings via direct variance reduction, or by enabling formulations which allow more efficient use of computational resources, such as formulations which provide high resolution in a particular phase-space dimension (e.g., spectral). We show that the proposed adjoint-based methods are particularly well suited to problems involving a wide range of length scales (e.g., nanometers to hundreds of microns) and lead to computational methods that can calculate quantities of interest with a cost that is independent of the system characteristic length scale, thus removing the traditional stiffness of kinetic descriptions. Applications to problems of current interest, such as simulation of transient thermoreflectance experiments or spectrally resolved calculation of the effective thermal conductivity of nanostructured materials, are presented and discussed in detail.</abstract><cop>United States</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.91.235321</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1098-0121
ispartof Physical review. B, 2015-06, Vol.91 (23), Article 235321
issn 1098-0121
2469-9950
1550-235X
2469-9969
language eng
recordid cdi_osti_scitechconnect_1198571
source American Physical Society Journals
subjects Boltzmann transport equation
Computation
Computer simulation
Formulations
Mathematical analysis
Monte Carlo methods
Phonons
Transport
title Adjoint-based deviational Monte Carlo methods for phonon transport calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T17%3A30%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjoint-based%20deviational%20Monte%20Carlo%20methods%20for%20phonon%20transport%20calculations&rft.jtitle=Physical%20review.%20B&rft.au=P%C3%A9raud,%20Jean-Philippe%20M.&rft.date=2015-06-30&rft.volume=91&rft.issue=23&rft.artnum=235321&rft.issn=1098-0121&rft.eissn=1550-235X&rft_id=info:doi/10.1103/PhysRevB.91.235321&rft_dat=%3Cproquest_osti_%3E1786205381%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1786205381&rft_id=info:pmid/&rfr_iscdi=true