The local atomic structure and chemical bonding in sodium tin phases

To understand the electrochemically-derived Na-Sn we have reinvestigated the formation of Na-Sn alloys to identify all the phases which form when x greater than or equal to 1 (Na sub(x)Sn) and characterized the local bonding around the Sn atoms with X-ray diffraction, super(119)Sn Mossbauer spectros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-09, Vol.2 (44), p.18959-18973
Hauptverfasser: Baggetto, Loic, Bridges, Craig A, Jumas, Jean-Claude, Mullins, David R, Carroll, Kyler J, Meisner, Roberta A, Crumlin, Ethan J, Liu, Xiaosong, Yang, Wanli, Veith, Gabriel M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18973
container_issue 44
container_start_page 18959
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 2
creator Baggetto, Loic
Bridges, Craig A
Jumas, Jean-Claude
Mullins, David R
Carroll, Kyler J
Meisner, Roberta A
Crumlin, Ethan J
Liu, Xiaosong
Yang, Wanli
Veith, Gabriel M
description To understand the electrochemically-derived Na-Sn we have reinvestigated the formation of Na-Sn alloys to identify all the phases which form when x greater than or equal to 1 (Na sub(x)Sn) and characterized the local bonding around the Sn atoms with X-ray diffraction, super(119)Sn Mossbauer spectroscopy, and X-ray absorption spectroscopies. The results from the well-defined crystallographic materials were compared to the spectroscopic measurements of the local Sn structures in the electrochemically prepared materials. The reinvestigation of the Na-Sn compounds yields a number of new results: (i) Na sub(7)Sn sub(3) is a new thermodynamically-stable phase with a rhombohedral structure and R3&cmb.macr; mspace group; (ii) orthorhombic Na sub(9)Sn sub(4) (Cmcm) has relatively slow formation kinetics suggesting why it does not form at room temperature during the electrochemical reaction; (iii) orthorhombic 'Na sub(14.78)Sn sub(4)' (Pnma), better described as Na sub(16-x)Sn sub(4 ), is Na-richer than cubic Na sub(15)Sn sub(4) (I4&cmb.macr; 3d). Characterization of electrochemically prepared Na-Sn alloys indicate that, with the exception of Na sub(7)Sn sub(3) and Na sub(15)Sn sub(4), different crystal structures than similar Na-Sn compositions prepared via classic solid state reactions are formed. These phases are composed of disordered structures characteristic of kinetic-driven solid-state amorphization reactions. In these structures, Sn coordinates in asymmetric environments, which differ significantly from the environments present in Na-Sn model compounds.
doi_str_mv 10.1039/c4ta04356a
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1185716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1651408166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-67d934b6a0fd5fae0ef2d3eb529e3de93d945bbb6d86b3e7dcb79fa41cf552603</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMouKx78RcUTypUk-ajzbGsHysseFnPIU2mNtI2a5MK_nu7VvbsXOblnYdhhhehS4LvCKby3rCoMaNc6BO0yDDHac6kOD3qojhHqxA-8FQFxkLKBXrYNZC03ug20dF3ziQhDqOJ4wCJ7m1iGpjMaVr53rr-PXF9Erx1Y5fESe4bHSBcoLNatwFWf32J3p4ed-tNun19flmX29QwgWMqcispq4TGteW1Bgx1ZilUPJNALUhqJeNVVQlbiIpCbk2Vy1ozYmrOM4HpEl3Ne32ITgXjIpjG-L4HExUhBc-JmKCbGWp0q_aD6_Twrbx2alNu1cHDhOCMsfyLTOz1zO4H_zlCiKpzwUDb6h78GBQRnDBcECH-gWbTc7koigm9nVEz-BAGqI9nEKwOSak125W_SZX0B1aLhCo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1629347688</pqid></control><display><type>article</type><title>The local atomic structure and chemical bonding in sodium tin phases</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Baggetto, Loic ; Bridges, Craig A ; Jumas, Jean-Claude ; Mullins, David R ; Carroll, Kyler J ; Meisner, Roberta A ; Crumlin, Ethan J ; Liu, Xiaosong ; Yang, Wanli ; Veith, Gabriel M</creator><creatorcontrib>Baggetto, Loic ; Bridges, Craig A ; Jumas, Jean-Claude ; Mullins, David R ; Carroll, Kyler J ; Meisner, Roberta A ; Crumlin, Ethan J ; Liu, Xiaosong ; Yang, Wanli ; Veith, Gabriel M ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><description>To understand the electrochemically-derived Na-Sn we have reinvestigated the formation of Na-Sn alloys to identify all the phases which form when x greater than or equal to 1 (Na sub(x)Sn) and characterized the local bonding around the Sn atoms with X-ray diffraction, super(119)Sn Mossbauer spectroscopy, and X-ray absorption spectroscopies. The results from the well-defined crystallographic materials were compared to the spectroscopic measurements of the local Sn structures in the electrochemically prepared materials. The reinvestigation of the Na-Sn compounds yields a number of new results: (i) Na sub(7)Sn sub(3) is a new thermodynamically-stable phase with a rhombohedral structure and R3&amp;cmb.macr; mspace group; (ii) orthorhombic Na sub(9)Sn sub(4) (Cmcm) has relatively slow formation kinetics suggesting why it does not form at room temperature during the electrochemical reaction; (iii) orthorhombic 'Na sub(14.78)Sn sub(4)' (Pnma), better described as Na sub(16-x)Sn sub(4 ), is Na-richer than cubic Na sub(15)Sn sub(4) (I4&amp;cmb.macr; 3d). Characterization of electrochemically prepared Na-Sn alloys indicate that, with the exception of Na sub(7)Sn sub(3) and Na sub(15)Sn sub(4), different crystal structures than similar Na-Sn compositions prepared via classic solid state reactions are formed. These phases are composed of disordered structures characteristic of kinetic-driven solid-state amorphization reactions. In these structures, Sn coordinates in asymmetric environments, which differ significantly from the environments present in Na-Sn model compounds.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c4ta04356a</identifier><language>eng</language><publisher>United States: Royal Society of Chemistry</publisher><subject>Alloys ; Bonding ; Chemical Sciences ; Formations ; Inorganic chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Phases ; Sodium base alloys ; Sustainability ; Tin ; X-rays</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2014-09, Vol.2 (44), p.18959-18973</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-67d934b6a0fd5fae0ef2d3eb529e3de93d945bbb6d86b3e7dcb79fa41cf552603</citedby><cites>FETCH-LOGICAL-c460t-67d934b6a0fd5fae0ef2d3eb529e3de93d945bbb6d86b3e7dcb79fa41cf552603</cites><orcidid>0000-0002-5186-4461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01102447$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1185716$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Baggetto, Loic</creatorcontrib><creatorcontrib>Bridges, Craig A</creatorcontrib><creatorcontrib>Jumas, Jean-Claude</creatorcontrib><creatorcontrib>Mullins, David R</creatorcontrib><creatorcontrib>Carroll, Kyler J</creatorcontrib><creatorcontrib>Meisner, Roberta A</creatorcontrib><creatorcontrib>Crumlin, Ethan J</creatorcontrib><creatorcontrib>Liu, Xiaosong</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Veith, Gabriel M</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><title>The local atomic structure and chemical bonding in sodium tin phases</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>To understand the electrochemically-derived Na-Sn we have reinvestigated the formation of Na-Sn alloys to identify all the phases which form when x greater than or equal to 1 (Na sub(x)Sn) and characterized the local bonding around the Sn atoms with X-ray diffraction, super(119)Sn Mossbauer spectroscopy, and X-ray absorption spectroscopies. The results from the well-defined crystallographic materials were compared to the spectroscopic measurements of the local Sn structures in the electrochemically prepared materials. The reinvestigation of the Na-Sn compounds yields a number of new results: (i) Na sub(7)Sn sub(3) is a new thermodynamically-stable phase with a rhombohedral structure and R3&amp;cmb.macr; mspace group; (ii) orthorhombic Na sub(9)Sn sub(4) (Cmcm) has relatively slow formation kinetics suggesting why it does not form at room temperature during the electrochemical reaction; (iii) orthorhombic 'Na sub(14.78)Sn sub(4)' (Pnma), better described as Na sub(16-x)Sn sub(4 ), is Na-richer than cubic Na sub(15)Sn sub(4) (I4&amp;cmb.macr; 3d). Characterization of electrochemically prepared Na-Sn alloys indicate that, with the exception of Na sub(7)Sn sub(3) and Na sub(15)Sn sub(4), different crystal structures than similar Na-Sn compositions prepared via classic solid state reactions are formed. These phases are composed of disordered structures characteristic of kinetic-driven solid-state amorphization reactions. In these structures, Sn coordinates in asymmetric environments, which differ significantly from the environments present in Na-Sn model compounds.</description><subject>Alloys</subject><subject>Bonding</subject><subject>Chemical Sciences</subject><subject>Formations</subject><subject>Inorganic chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Phases</subject><subject>Sodium base alloys</subject><subject>Sustainability</subject><subject>Tin</subject><subject>X-rays</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMouKx78RcUTypUk-ajzbGsHysseFnPIU2mNtI2a5MK_nu7VvbsXOblnYdhhhehS4LvCKby3rCoMaNc6BO0yDDHac6kOD3qojhHqxA-8FQFxkLKBXrYNZC03ug20dF3ziQhDqOJ4wCJ7m1iGpjMaVr53rr-PXF9Erx1Y5fESe4bHSBcoLNatwFWf32J3p4ed-tNun19flmX29QwgWMqcispq4TGteW1Bgx1ZilUPJNALUhqJeNVVQlbiIpCbk2Vy1ozYmrOM4HpEl3Ne32ITgXjIpjG-L4HExUhBc-JmKCbGWp0q_aD6_Twrbx2alNu1cHDhOCMsfyLTOz1zO4H_zlCiKpzwUDb6h78GBQRnDBcECH-gWbTc7koigm9nVEz-BAGqI9nEKwOSak125W_SZX0B1aLhCo</recordid><startdate>20140925</startdate><enddate>20140925</enddate><creator>Baggetto, Loic</creator><creator>Bridges, Craig A</creator><creator>Jumas, Jean-Claude</creator><creator>Mullins, David R</creator><creator>Carroll, Kyler J</creator><creator>Meisner, Roberta A</creator><creator>Crumlin, Ethan J</creator><creator>Liu, Xiaosong</creator><creator>Yang, Wanli</creator><creator>Veith, Gabriel M</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-5186-4461</orcidid></search><sort><creationdate>20140925</creationdate><title>The local atomic structure and chemical bonding in sodium tin phases</title><author>Baggetto, Loic ; Bridges, Craig A ; Jumas, Jean-Claude ; Mullins, David R ; Carroll, Kyler J ; Meisner, Roberta A ; Crumlin, Ethan J ; Liu, Xiaosong ; Yang, Wanli ; Veith, Gabriel M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-67d934b6a0fd5fae0ef2d3eb529e3de93d945bbb6d86b3e7dcb79fa41cf552603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alloys</topic><topic>Bonding</topic><topic>Chemical Sciences</topic><topic>Formations</topic><topic>Inorganic chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Phases</topic><topic>Sodium base alloys</topic><topic>Sustainability</topic><topic>Tin</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baggetto, Loic</creatorcontrib><creatorcontrib>Bridges, Craig A</creatorcontrib><creatorcontrib>Jumas, Jean-Claude</creatorcontrib><creatorcontrib>Mullins, David R</creatorcontrib><creatorcontrib>Carroll, Kyler J</creatorcontrib><creatorcontrib>Meisner, Roberta A</creatorcontrib><creatorcontrib>Crumlin, Ethan J</creatorcontrib><creatorcontrib>Liu, Xiaosong</creatorcontrib><creatorcontrib>Yang, Wanli</creatorcontrib><creatorcontrib>Veith, Gabriel M</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baggetto, Loic</au><au>Bridges, Craig A</au><au>Jumas, Jean-Claude</au><au>Mullins, David R</au><au>Carroll, Kyler J</au><au>Meisner, Roberta A</au><au>Crumlin, Ethan J</au><au>Liu, Xiaosong</au><au>Yang, Wanli</au><au>Veith, Gabriel M</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The local atomic structure and chemical bonding in sodium tin phases</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2014-09-25</date><risdate>2014</risdate><volume>2</volume><issue>44</issue><spage>18959</spage><epage>18973</epage><pages>18959-18973</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>To understand the electrochemically-derived Na-Sn we have reinvestigated the formation of Na-Sn alloys to identify all the phases which form when x greater than or equal to 1 (Na sub(x)Sn) and characterized the local bonding around the Sn atoms with X-ray diffraction, super(119)Sn Mossbauer spectroscopy, and X-ray absorption spectroscopies. The results from the well-defined crystallographic materials were compared to the spectroscopic measurements of the local Sn structures in the electrochemically prepared materials. The reinvestigation of the Na-Sn compounds yields a number of new results: (i) Na sub(7)Sn sub(3) is a new thermodynamically-stable phase with a rhombohedral structure and R3&amp;cmb.macr; mspace group; (ii) orthorhombic Na sub(9)Sn sub(4) (Cmcm) has relatively slow formation kinetics suggesting why it does not form at room temperature during the electrochemical reaction; (iii) orthorhombic 'Na sub(14.78)Sn sub(4)' (Pnma), better described as Na sub(16-x)Sn sub(4 ), is Na-richer than cubic Na sub(15)Sn sub(4) (I4&amp;cmb.macr; 3d). Characterization of electrochemically prepared Na-Sn alloys indicate that, with the exception of Na sub(7)Sn sub(3) and Na sub(15)Sn sub(4), different crystal structures than similar Na-Sn compositions prepared via classic solid state reactions are formed. These phases are composed of disordered structures characteristic of kinetic-driven solid-state amorphization reactions. In these structures, Sn coordinates in asymmetric environments, which differ significantly from the environments present in Na-Sn model compounds.</abstract><cop>United States</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c4ta04356a</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5186-4461</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2014-09, Vol.2 (44), p.18959-18973
issn 2050-7488
2050-7496
language eng
recordid cdi_osti_scitechconnect_1185716
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Alloys
Bonding
Chemical Sciences
Formations
Inorganic chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Phases
Sodium base alloys
Sustainability
Tin
X-rays
title The local atomic structure and chemical bonding in sodium tin phases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A42%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20local%20atomic%20structure%20and%20chemical%20bonding%20in%20sodium%20tin%20phases&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Baggetto,%20Loic&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Spallation%20Neutron%20Source%20(SNS)&rft.date=2014-09-25&rft.volume=2&rft.issue=44&rft.spage=18959&rft.epage=18973&rft.pages=18959-18973&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c4ta04356a&rft_dat=%3Cproquest_osti_%3E1651408166%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1629347688&rft_id=info:pmid/&rfr_iscdi=true