Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide

First-principles density-functional theory calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (VOn; n = 0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5), and also at vacuum and metallic Ta interfaces. We calculate m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2015-02, Vol.117 (8)
Hauptverfasser: Bondi, Robert J., Marinella, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Journal of applied physics
container_volume 117
creator Bondi, Robert J.
Marinella, Matthew J.
description First-principles density-functional theory calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (VOn; n = 0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5), and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. VOn of all oxidation states preferentially segregates at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta2O5, VO0 is characterized by structural contraction and electron density localization, while VO2+ promotes structural expansion and is depleted of electron density. In contrast, interfacial VO0 and VO2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced VO center. Interfacial VO2+ extracts electron density from metallic Ta, indicating that VO2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.
doi_str_mv 10.1063/1.4913206
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1184499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2123779847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7196757e14a5d9859959919736420f8b8a04e9bd0d6ad632733b116988f7a6473</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsL_0HQlYupeZOZJG8pxS8oFEHXIc1kNKVN6iSV9t8bbeHB3RwO911CroFNgAl-D5MGgddMnJARMIWVbFt2SkaM1VAplHhOLlJaMgagOI7I23znO5N9DDRlkx01oaM-ZDf0xnqzoq7vnc2JFiDu9p8u0B9jTbDepcLRbEI2q-2ablzIsbjcJTnrzSq5q2OOycfT4_v0pZrNn1-nD7PKcsBcSUAhW-mgMW2HqkUsByi5aGrWq4UyrHG46FgnTCd4LTlfAAhUqpdGNJKPyc3BG1P2Olmfnf2yMYRSV5fvmgaxQLcHaDPE761LWS_jdgill66h5lKi-lfdHSg7xJQG1-vN4Ndm2Gtg-m9WDfo4K_8FT_hnvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2123779847</pqid></control><display><type>article</type><title>Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Bondi, Robert J. ; Marinella, Matthew J.</creator><creatorcontrib>Bondi, Robert J. ; Marinella, Matthew J. ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>First-principles density-functional theory calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (VOn; n = 0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5), and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. VOn of all oxidation states preferentially segregates at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta2O5, VO0 is characterized by structural contraction and electron density localization, while VO2+ promotes structural expansion and is depleted of electron density. In contrast, interfacial VO0 and VO2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced VO center. Interfacial VO2+ extracts electron density from metallic Ta, indicating that VO2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/1.4913206</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Electron density ; Electrons ; Energy of formation ; First principles ; Free energy ; Heat of formation ; Interface stability ; Mathematical analysis ; Memristors ; NUCLEAR PHYSICS AND RADIATION PHYSICS ; Oxidation ; Reduction (metal working) ; Stability analysis ; Tantalum ; Tantalum oxides ; Vacancies ; Valence ; Vanadium oxides</subject><ispartof>Journal of applied physics, 2015-02, Vol.117 (8)</ispartof><rights>2015 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7196757e14a5d9859959919736420f8b8a04e9bd0d6ad632733b116988f7a6473</citedby><cites>FETCH-LOGICAL-c319t-7196757e14a5d9859959919736420f8b8a04e9bd0d6ad632733b116988f7a6473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27911,27912</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1184499$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Bondi, Robert J.</creatorcontrib><creatorcontrib>Marinella, Matthew J.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide</title><title>Journal of applied physics</title><description>First-principles density-functional theory calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (VOn; n = 0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5), and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. VOn of all oxidation states preferentially segregates at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta2O5, VO0 is characterized by structural contraction and electron density localization, while VO2+ promotes structural expansion and is depleted of electron density. In contrast, interfacial VO0 and VO2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced VO center. Interfacial VO2+ extracts electron density from metallic Ta, indicating that VO2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.</description><subject>Applied physics</subject><subject>Electron density</subject><subject>Electrons</subject><subject>Energy of formation</subject><subject>First principles</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Interface stability</subject><subject>Mathematical analysis</subject><subject>Memristors</subject><subject>NUCLEAR PHYSICS AND RADIATION PHYSICS</subject><subject>Oxidation</subject><subject>Reduction (metal working)</subject><subject>Stability analysis</subject><subject>Tantalum</subject><subject>Tantalum oxides</subject><subject>Vacancies</subject><subject>Valence</subject><subject>Vanadium oxides</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURYMoWKsL_0HQlYupeZOZJG8pxS8oFEHXIc1kNKVN6iSV9t8bbeHB3RwO911CroFNgAl-D5MGgddMnJARMIWVbFt2SkaM1VAplHhOLlJaMgagOI7I23znO5N9DDRlkx01oaM-ZDf0xnqzoq7vnc2JFiDu9p8u0B9jTbDepcLRbEI2q-2ablzIsbjcJTnrzSq5q2OOycfT4_v0pZrNn1-nD7PKcsBcSUAhW-mgMW2HqkUsByi5aGrWq4UyrHG46FgnTCd4LTlfAAhUqpdGNJKPyc3BG1P2Olmfnf2yMYRSV5fvmgaxQLcHaDPE761LWS_jdgill66h5lKi-lfdHSg7xJQG1-vN4Ndm2Gtg-m9WDfo4K_8FT_hnvQ</recordid><startdate>20150228</startdate><enddate>20150228</enddate><creator>Bondi, Robert J.</creator><creator>Marinella, Matthew J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20150228</creationdate><title>Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide</title><author>Bondi, Robert J. ; Marinella, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7196757e14a5d9859959919736420f8b8a04e9bd0d6ad632733b116988f7a6473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applied physics</topic><topic>Electron density</topic><topic>Electrons</topic><topic>Energy of formation</topic><topic>First principles</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Interface stability</topic><topic>Mathematical analysis</topic><topic>Memristors</topic><topic>NUCLEAR PHYSICS AND RADIATION PHYSICS</topic><topic>Oxidation</topic><topic>Reduction (metal working)</topic><topic>Stability analysis</topic><topic>Tantalum</topic><topic>Tantalum oxides</topic><topic>Vacancies</topic><topic>Valence</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bondi, Robert J.</creatorcontrib><creatorcontrib>Marinella, Matthew J.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bondi, Robert J.</au><au>Marinella, Matthew J.</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide</atitle><jtitle>Journal of applied physics</jtitle><date>2015-02-28</date><risdate>2015</risdate><volume>117</volume><issue>8</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><abstract>First-principles density-functional theory calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (VOn; n = 0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5), and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. VOn of all oxidation states preferentially segregates at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta2O5, VO0 is characterized by structural contraction and electron density localization, while VO2+ promotes structural expansion and is depleted of electron density. In contrast, interfacial VO0 and VO2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced VO center. Interfacial VO2+ extracts electron density from metallic Ta, indicating that VO2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/1.4913206</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2015-02, Vol.117 (8)
issn 0021-8979
1089-7550
language eng
recordid cdi_osti_scitechconnect_1184499
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Electron density
Electrons
Energy of formation
First principles
Free energy
Heat of formation
Interface stability
Mathematical analysis
Memristors
NUCLEAR PHYSICS AND RADIATION PHYSICS
Oxidation
Reduction (metal working)
Stability analysis
Tantalum
Tantalum oxides
Vacancies
Valence
Vanadium oxides
title Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A46%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20state%20and%20interfacial%20effects%20on%20oxygen%20vacancies%20in%20tantalum%20pentoxide&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Bondi,%20Robert%20J.&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2015-02-28&rft.volume=117&rft.issue=8&rft.issn=0021-8979&rft.eissn=1089-7550&rft_id=info:doi/10.1063/1.4913206&rft_dat=%3Cproquest_osti_%3E2123779847%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2123779847&rft_id=info:pmid/&rfr_iscdi=true