Momentum transport in electron-dominated NSTX spherical torus plasmas

The National Spherical Torus Experiment (NSTX) operates between 0.35 and 0.55 T, which, when coupled to up to 7 MW of neutral beam injection, leads to central rotation velocities in excess of 300 km s −1 and E × B shearing rates up to 1 MHz. This level of E × B shear can be up to a factor of five gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear fusion 2009-04, Vol.49 (4), p.045010-045010 (7)
Hauptverfasser: Kaye, S.M, Solomon, W, Bell, R.E, LeBlanc, B.P, Levinton, F, Menard, J, Rewoldt, G, Sabbagh, S, Wang, W, Yuh, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 045010 (7)
container_issue 4
container_start_page 045010
container_title Nuclear fusion
container_volume 49
creator Kaye, S.M
Solomon, W
Bell, R.E
LeBlanc, B.P
Levinton, F
Menard, J
Rewoldt, G
Sabbagh, S
Wang, W
Yuh, H
description The National Spherical Torus Experiment (NSTX) operates between 0.35 and 0.55 T, which, when coupled to up to 7 MW of neutral beam injection, leads to central rotation velocities in excess of 300 km s −1 and E × B shearing rates up to 1 MHz. This level of E × B shear can be up to a factor of five greater than typical linear growth rates of long-wavelength ion (e.g. ITG) modes, at least partially suppressing these instabilities. Evidence for this turbulence suppression is that the inferred diffusive ion thermal flux in NSTX H-modes is often at the neoclassical level, and thus these plasmas operate in an electron-dominated transport regime. Analysis of experiments using n = 3 magnetic fields to change plasma rotation indicate that local rotation shear influences local transport coefficients, most notably the ion thermal diffusivity, in a manner consistent with suppression of the low- k turbulence by this rotation shear. The value of the effective momentum diffusivity, as inferred from steady-state momentum balance, is found to be larger than the neoclassical value. Results of perturbative experiments indicate inward pinch velocities of up to 40 m s −1 and perturbative momentum diffusivities of up to 4 m 2  s −1 , which are larger by a factor of several than those values inferred from steady-state analysis. The inferred pinch velocity values are consistent with values based on theories in which low- k turbulence drives the inward momentum pinch. Thus, in NSTX while the neoclassical ion energy transport effects can be relatively high and dominate the ion energy transport, the neoclassical momentum transport effects are near zero, meaning that transport of momentum is dominated by any low- k turbulence that exists.
doi_str_mv 10.1088/0029-5515/49/4/045010
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1170940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>743293257</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-9eba6f3de60e6621b6c4a4a232c41bd8b27bc776574cd9068c765048612770a33</originalsourceid><addsrcrecordid>eNqNkE1L5TAUhoM44PWOP0Eogrixc08-mrRLEb_AmVmMgruQpilG2qbm5C7895NLxY0uXJ2zeN73HB5Cjin8olDXGwDWlFVFq41oNmIDogIKe2RFlaCl4Ezuk9UHc0AOEV8AqKCcr8jV7zC6KW3HIkUz4RxiKvxUuMHZFMNUdmH0k0muK_78e3gqcH520VszFCnELRbzYHA0-JP86M2A7uh9rsnj9dXD5W15__fm7vLivrSilqlsXGtkzzsnwUnJaCutMMIwzqygbVe3TLVWKVkpYbsGZG3zDjlKmVJgOF-Tk6U3YPIarU_OPtswTflbTamCRkCGzhZojuF16zDp0aN1w2AmF7aoVVbScFapTFYLaWNAjK7Xc_SjiW-agt6p1TtteqdNi0YLvajNudP3Cwaziz6bsx4_wozmL2gtMgcL58P87erzz5EvUT13Pf8PVO6TWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>743293257</pqid></control><display><type>article</type><title>Momentum transport in electron-dominated NSTX spherical torus plasmas</title><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Kaye, S.M ; Solomon, W ; Bell, R.E ; LeBlanc, B.P ; Levinton, F ; Menard, J ; Rewoldt, G ; Sabbagh, S ; Wang, W ; Yuh, H</creator><creatorcontrib>Kaye, S.M ; Solomon, W ; Bell, R.E ; LeBlanc, B.P ; Levinton, F ; Menard, J ; Rewoldt, G ; Sabbagh, S ; Wang, W ; Yuh, H</creatorcontrib><description>The National Spherical Torus Experiment (NSTX) operates between 0.35 and 0.55 T, which, when coupled to up to 7 MW of neutral beam injection, leads to central rotation velocities in excess of 300 km s −1 and E × B shearing rates up to 1 MHz. This level of E × B shear can be up to a factor of five greater than typical linear growth rates of long-wavelength ion (e.g. ITG) modes, at least partially suppressing these instabilities. Evidence for this turbulence suppression is that the inferred diffusive ion thermal flux in NSTX H-modes is often at the neoclassical level, and thus these plasmas operate in an electron-dominated transport regime. Analysis of experiments using n = 3 magnetic fields to change plasma rotation indicate that local rotation shear influences local transport coefficients, most notably the ion thermal diffusivity, in a manner consistent with suppression of the low- k turbulence by this rotation shear. The value of the effective momentum diffusivity, as inferred from steady-state momentum balance, is found to be larger than the neoclassical value. Results of perturbative experiments indicate inward pinch velocities of up to 40 m s −1 and perturbative momentum diffusivities of up to 4 m 2  s −1 , which are larger by a factor of several than those values inferred from steady-state analysis. The inferred pinch velocity values are consistent with values based on theories in which low- k turbulence drives the inward momentum pinch. Thus, in NSTX while the neoclassical ion energy transport effects can be relatively high and dominate the ion energy transport, the neoclassical momentum transport effects are near zero, meaning that transport of momentum is dominated by any low- k turbulence that exists.</description><identifier>ISSN: 0029-5515</identifier><identifier>EISSN: 1741-4326</identifier><identifier>DOI: 10.1088/0029-5515/49/4/045010</identifier><identifier>CODEN: NUFUAU</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Exact sciences and technology ; Magnetic confinement and equilibrium ; Physics ; Physics of gases, plasmas and electric discharges ; Physics of plasmas and electric discharges ; Plasma heating (beam injection, radio-frequency and microwave, ohmic, icr, ecr and current drive heating) ; Plasma production and heating ; Plasma properties ; Plasma turbulence ; Tokamaks ; Transport properties ; Waves, oscillations, and instabilities in plasmas and intense beams</subject><ispartof>Nuclear fusion, 2009-04, Vol.49 (4), p.045010-045010 (7)</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-9eba6f3de60e6621b6c4a4a232c41bd8b27bc776574cd9068c765048612770a33</citedby><cites>FETCH-LOGICAL-c486t-9eba6f3de60e6621b6c4a4a232c41bd8b27bc776574cd9068c765048612770a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0029-5515/49/4/045010/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,776,780,881,27901,27902,53805,53885</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21403184$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1170940$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaye, S.M</creatorcontrib><creatorcontrib>Solomon, W</creatorcontrib><creatorcontrib>Bell, R.E</creatorcontrib><creatorcontrib>LeBlanc, B.P</creatorcontrib><creatorcontrib>Levinton, F</creatorcontrib><creatorcontrib>Menard, J</creatorcontrib><creatorcontrib>Rewoldt, G</creatorcontrib><creatorcontrib>Sabbagh, S</creatorcontrib><creatorcontrib>Wang, W</creatorcontrib><creatorcontrib>Yuh, H</creatorcontrib><title>Momentum transport in electron-dominated NSTX spherical torus plasmas</title><title>Nuclear fusion</title><description>The National Spherical Torus Experiment (NSTX) operates between 0.35 and 0.55 T, which, when coupled to up to 7 MW of neutral beam injection, leads to central rotation velocities in excess of 300 km s −1 and E × B shearing rates up to 1 MHz. This level of E × B shear can be up to a factor of five greater than typical linear growth rates of long-wavelength ion (e.g. ITG) modes, at least partially suppressing these instabilities. Evidence for this turbulence suppression is that the inferred diffusive ion thermal flux in NSTX H-modes is often at the neoclassical level, and thus these plasmas operate in an electron-dominated transport regime. Analysis of experiments using n = 3 magnetic fields to change plasma rotation indicate that local rotation shear influences local transport coefficients, most notably the ion thermal diffusivity, in a manner consistent with suppression of the low- k turbulence by this rotation shear. The value of the effective momentum diffusivity, as inferred from steady-state momentum balance, is found to be larger than the neoclassical value. Results of perturbative experiments indicate inward pinch velocities of up to 40 m s −1 and perturbative momentum diffusivities of up to 4 m 2  s −1 , which are larger by a factor of several than those values inferred from steady-state analysis. The inferred pinch velocity values are consistent with values based on theories in which low- k turbulence drives the inward momentum pinch. Thus, in NSTX while the neoclassical ion energy transport effects can be relatively high and dominate the ion energy transport, the neoclassical momentum transport effects are near zero, meaning that transport of momentum is dominated by any low- k turbulence that exists.</description><subject>Exact sciences and technology</subject><subject>Magnetic confinement and equilibrium</subject><subject>Physics</subject><subject>Physics of gases, plasmas and electric discharges</subject><subject>Physics of plasmas and electric discharges</subject><subject>Plasma heating (beam injection, radio-frequency and microwave, ohmic, icr, ecr and current drive heating)</subject><subject>Plasma production and heating</subject><subject>Plasma properties</subject><subject>Plasma turbulence</subject><subject>Tokamaks</subject><subject>Transport properties</subject><subject>Waves, oscillations, and instabilities in plasmas and intense beams</subject><issn>0029-5515</issn><issn>1741-4326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkE1L5TAUhoM44PWOP0Eogrixc08-mrRLEb_AmVmMgruQpilG2qbm5C7895NLxY0uXJ2zeN73HB5Cjin8olDXGwDWlFVFq41oNmIDogIKe2RFlaCl4Ezuk9UHc0AOEV8AqKCcr8jV7zC6KW3HIkUz4RxiKvxUuMHZFMNUdmH0k0muK_78e3gqcH520VszFCnELRbzYHA0-JP86M2A7uh9rsnj9dXD5W15__fm7vLivrSilqlsXGtkzzsnwUnJaCutMMIwzqygbVe3TLVWKVkpYbsGZG3zDjlKmVJgOF-Tk6U3YPIarU_OPtswTflbTamCRkCGzhZojuF16zDp0aN1w2AmF7aoVVbScFapTFYLaWNAjK7Xc_SjiW-agt6p1TtteqdNi0YLvajNudP3Cwaziz6bsx4_wozmL2gtMgcL58P87erzz5EvUT13Pf8PVO6TWw</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Kaye, S.M</creator><creator>Solomon, W</creator><creator>Bell, R.E</creator><creator>LeBlanc, B.P</creator><creator>Levinton, F</creator><creator>Menard, J</creator><creator>Rewoldt, G</creator><creator>Sabbagh, S</creator><creator>Wang, W</creator><creator>Yuh, H</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20090401</creationdate><title>Momentum transport in electron-dominated NSTX spherical torus plasmas</title><author>Kaye, S.M ; Solomon, W ; Bell, R.E ; LeBlanc, B.P ; Levinton, F ; Menard, J ; Rewoldt, G ; Sabbagh, S ; Wang, W ; Yuh, H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-9eba6f3de60e6621b6c4a4a232c41bd8b27bc776574cd9068c765048612770a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Magnetic confinement and equilibrium</topic><topic>Physics</topic><topic>Physics of gases, plasmas and electric discharges</topic><topic>Physics of plasmas and electric discharges</topic><topic>Plasma heating (beam injection, radio-frequency and microwave, ohmic, icr, ecr and current drive heating)</topic><topic>Plasma production and heating</topic><topic>Plasma properties</topic><topic>Plasma turbulence</topic><topic>Tokamaks</topic><topic>Transport properties</topic><topic>Waves, oscillations, and instabilities in plasmas and intense beams</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaye, S.M</creatorcontrib><creatorcontrib>Solomon, W</creatorcontrib><creatorcontrib>Bell, R.E</creatorcontrib><creatorcontrib>LeBlanc, B.P</creatorcontrib><creatorcontrib>Levinton, F</creatorcontrib><creatorcontrib>Menard, J</creatorcontrib><creatorcontrib>Rewoldt, G</creatorcontrib><creatorcontrib>Sabbagh, S</creatorcontrib><creatorcontrib>Wang, W</creatorcontrib><creatorcontrib>Yuh, H</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Nuclear fusion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaye, S.M</au><au>Solomon, W</au><au>Bell, R.E</au><au>LeBlanc, B.P</au><au>Levinton, F</au><au>Menard, J</au><au>Rewoldt, G</au><au>Sabbagh, S</au><au>Wang, W</au><au>Yuh, H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Momentum transport in electron-dominated NSTX spherical torus plasmas</atitle><jtitle>Nuclear fusion</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>49</volume><issue>4</issue><spage>045010</spage><epage>045010 (7)</epage><pages>045010-045010 (7)</pages><issn>0029-5515</issn><eissn>1741-4326</eissn><coden>NUFUAU</coden><abstract>The National Spherical Torus Experiment (NSTX) operates between 0.35 and 0.55 T, which, when coupled to up to 7 MW of neutral beam injection, leads to central rotation velocities in excess of 300 km s −1 and E × B shearing rates up to 1 MHz. This level of E × B shear can be up to a factor of five greater than typical linear growth rates of long-wavelength ion (e.g. ITG) modes, at least partially suppressing these instabilities. Evidence for this turbulence suppression is that the inferred diffusive ion thermal flux in NSTX H-modes is often at the neoclassical level, and thus these plasmas operate in an electron-dominated transport regime. Analysis of experiments using n = 3 magnetic fields to change plasma rotation indicate that local rotation shear influences local transport coefficients, most notably the ion thermal diffusivity, in a manner consistent with suppression of the low- k turbulence by this rotation shear. The value of the effective momentum diffusivity, as inferred from steady-state momentum balance, is found to be larger than the neoclassical value. Results of perturbative experiments indicate inward pinch velocities of up to 40 m s −1 and perturbative momentum diffusivities of up to 4 m 2  s −1 , which are larger by a factor of several than those values inferred from steady-state analysis. The inferred pinch velocity values are consistent with values based on theories in which low- k turbulence drives the inward momentum pinch. Thus, in NSTX while the neoclassical ion energy transport effects can be relatively high and dominate the ion energy transport, the neoclassical momentum transport effects are near zero, meaning that transport of momentum is dominated by any low- k turbulence that exists.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0029-5515/49/4/045010</doi></addata></record>
fulltext fulltext
identifier ISSN: 0029-5515
ispartof Nuclear fusion, 2009-04, Vol.49 (4), p.045010-045010 (7)
issn 0029-5515
1741-4326
language eng
recordid cdi_osti_scitechconnect_1170940
source IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects Exact sciences and technology
Magnetic confinement and equilibrium
Physics
Physics of gases, plasmas and electric discharges
Physics of plasmas and electric discharges
Plasma heating (beam injection, radio-frequency and microwave, ohmic, icr, ecr and current drive heating)
Plasma production and heating
Plasma properties
Plasma turbulence
Tokamaks
Transport properties
Waves, oscillations, and instabilities in plasmas and intense beams
title Momentum transport in electron-dominated NSTX spherical torus plasmas
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A46%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Momentum%20transport%20in%20electron-dominated%20NSTX%20spherical%20torus%20plasmas&rft.jtitle=Nuclear%20fusion&rft.au=Kaye,%20S.M&rft.date=2009-04-01&rft.volume=49&rft.issue=4&rft.spage=045010&rft.epage=045010%20(7)&rft.pages=045010-045010%20(7)&rft.issn=0029-5515&rft.eissn=1741-4326&rft.coden=NUFUAU&rft_id=info:doi/10.1088/0029-5515/49/4/045010&rft_dat=%3Cproquest_osti_%3E743293257%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=743293257&rft_id=info:pmid/&rfr_iscdi=true