Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit
To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible fo...
Gespeichert in:
Veröffentlicht in: | Powder technology 2014-10, Vol.265, p.35-46 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | |
container_start_page | 35 |
container_title | Powder technology |
container_volume | 265 |
creator | Sarkar, Avik Pan, Wenxiao Suh, DongMyung Huckaby, E. David Sun, Xin |
description | To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible for extracting CO2 from CO2-loaded particles before the sorbent is recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the flow regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented. |
doi_str_mv | 10.1016/j.powtec.2014.01.031 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1167636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591014000400</els_id><sourcerecordid>S0032591014000400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-db3d5f63584371474119caa8a7a7fd12d007203ae121c571b1beacaf5ab1a2433</originalsourceid><addsrcrecordid>eNp9kM9L5DAUx8OisKPuf7CHsuCx9b2mbTqXBZH9ISheFMRLeE3TmQydpCSpg_71m6GyRw_hHfL5Jt_3Yew7QoGAzdWumNwhalWUgFUBWADHL2yFreA5L9vnE7YC4GVerxG-srMQdgDQcIQVe7mfx2imLQWdDaM7ZMHs55GicTZkbsgo27tXYzfpcja9edd91qXj9UZb7Sk6nxmbKEW-czaNKc5eZ7M18YKdDjQG_e1jnrOn378eb_7mdw9_bm-u73JVCYh53_G-HhpetxUXWIkKca2IWhIkhh7LHkCUwEljiaoW2GGnSdFQU4dUVpyfsx_Luy5EI4MyycRWOWu1ihKxEQ1vElQtkPIuBK8HOXmzJ_8mEeRRotzJRaI8SpSAMklMscslNlFQNA6erDLhf7ZshahT7cT9XDidFn012h97aKt0b_yxRu_M5x_9A13LioE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit</title><source>Elsevier ScienceDirect Journals</source><creator>Sarkar, Avik ; Pan, Wenxiao ; Suh, DongMyung ; Huckaby, E. David ; Sun, Xin</creator><creatorcontrib>Sarkar, Avik ; Pan, Wenxiao ; Suh, DongMyung ; Huckaby, E. David ; Sun, Xin ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible for extracting CO2 from CO2-loaded particles before the sorbent is recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the flow regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2014.01.031</identifier><identifier>CODEN: POTEBX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>01 COAL, LIGNITE, AND PEAT ; Applied sciences ; Carbon capture ; Chemical engineering ; Computational fluid dynamics ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; Fluidization ; Hydrodynamics of contact apparatus ; Miscellaneous ; Moving bed ; Multi-phase flow ; Regenerator ; Solid-solid systems</subject><ispartof>Powder technology, 2014-10, Vol.265, p.35-46</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-db3d5f63584371474119caa8a7a7fd12d007203ae121c571b1beacaf5ab1a2433</citedby><cites>FETCH-LOGICAL-c470t-db3d5f63584371474119caa8a7a7fd12d007203ae121c571b1beacaf5ab1a2433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032591014000400$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3536,23910,23911,25119,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28775437$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1167636$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkar, Avik</creatorcontrib><creatorcontrib>Pan, Wenxiao</creatorcontrib><creatorcontrib>Suh, DongMyung</creatorcontrib><creatorcontrib>Huckaby, E. David</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit</title><title>Powder technology</title><description>To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible for extracting CO2 from CO2-loaded particles before the sorbent is recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the flow regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.</description><subject>01 COAL, LIGNITE, AND PEAT</subject><subject>Applied sciences</subject><subject>Carbon capture</subject><subject>Chemical engineering</subject><subject>Computational fluid dynamics</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>Fluidization</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Miscellaneous</subject><subject>Moving bed</subject><subject>Multi-phase flow</subject><subject>Regenerator</subject><subject>Solid-solid systems</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM9L5DAUx8OisKPuf7CHsuCx9b2mbTqXBZH9ISheFMRLeE3TmQydpCSpg_71m6GyRw_hHfL5Jt_3Yew7QoGAzdWumNwhalWUgFUBWADHL2yFreA5L9vnE7YC4GVerxG-srMQdgDQcIQVe7mfx2imLQWdDaM7ZMHs55GicTZkbsgo27tXYzfpcja9edd91qXj9UZb7Sk6nxmbKEW-czaNKc5eZ7M18YKdDjQG_e1jnrOn378eb_7mdw9_bm-u73JVCYh53_G-HhpetxUXWIkKca2IWhIkhh7LHkCUwEljiaoW2GGnSdFQU4dUVpyfsx_Luy5EI4MyycRWOWu1ihKxEQ1vElQtkPIuBK8HOXmzJ_8mEeRRotzJRaI8SpSAMklMscslNlFQNA6erDLhf7ZshahT7cT9XDidFn012h97aKt0b_yxRu_M5x_9A13LioE</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Sarkar, Avik</creator><creator>Pan, Wenxiao</creator><creator>Suh, DongMyung</creator><creator>Huckaby, E. David</creator><creator>Sun, Xin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20141001</creationdate><title>Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit</title><author>Sarkar, Avik ; Pan, Wenxiao ; Suh, DongMyung ; Huckaby, E. David ; Sun, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-db3d5f63584371474119caa8a7a7fd12d007203ae121c571b1beacaf5ab1a2433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>01 COAL, LIGNITE, AND PEAT</topic><topic>Applied sciences</topic><topic>Carbon capture</topic><topic>Chemical engineering</topic><topic>Computational fluid dynamics</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>Fluidization</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Miscellaneous</topic><topic>Moving bed</topic><topic>Multi-phase flow</topic><topic>Regenerator</topic><topic>Solid-solid systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Avik</creatorcontrib><creatorcontrib>Pan, Wenxiao</creatorcontrib><creatorcontrib>Suh, DongMyung</creatorcontrib><creatorcontrib>Huckaby, E. David</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Avik</au><au>Pan, Wenxiao</au><au>Suh, DongMyung</au><au>Huckaby, E. David</au><au>Sun, Xin</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit</atitle><jtitle>Powder technology</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>265</volume><spage>35</spage><epage>46</epage><pages>35-46</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><coden>POTEBX</coden><abstract>To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible for extracting CO2 from CO2-loaded particles before the sorbent is recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the flow regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2014.01.031</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-5910 |
ispartof | Powder technology, 2014-10, Vol.265, p.35-46 |
issn | 0032-5910 1873-328X |
language | eng |
recordid | cdi_osti_scitechconnect_1167636 |
source | Elsevier ScienceDirect Journals |
subjects | 01 COAL, LIGNITE, AND PEAT Applied sciences Carbon capture Chemical engineering Computational fluid dynamics ENVIRONMENTAL SCIENCES Exact sciences and technology Fluidization Hydrodynamics of contact apparatus Miscellaneous Moving bed Multi-phase flow Regenerator Solid-solid systems |
title | Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphase%20flow%20simulations%20of%20a%20moving%20fluidized%20bed%20regenerator%20in%20a%20carbon%20capture%20unit&rft.jtitle=Powder%20technology&rft.au=Sarkar,%20Avik&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2014-10-01&rft.volume=265&rft.spage=35&rft.epage=46&rft.pages=35-46&rft.issn=0032-5910&rft.eissn=1873-328X&rft.coden=POTEBX&rft_id=info:doi/10.1016/j.powtec.2014.01.031&rft_dat=%3Celsevier_osti_%3ES0032591014000400%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0032591014000400&rfr_iscdi=true |