Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit

To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2014-10, Vol.265, p.35-46
Hauptverfasser: Sarkar, Avik, Pan, Wenxiao, Suh, DongMyung, Huckaby, E. David, Sun, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue
container_start_page 35
container_title Powder technology
container_volume 265
creator Sarkar, Avik
Pan, Wenxiao
Suh, DongMyung
Huckaby, E. David
Sun, Xin
description To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible for extracting CO2 from CO2-loaded particles before the sorbent is recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the flow regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.
doi_str_mv 10.1016/j.powtec.2014.01.031
format Article
fullrecord <record><control><sourceid>elsevier_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1167636</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0032591014000400</els_id><sourcerecordid>S0032591014000400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-db3d5f63584371474119caa8a7a7fd12d007203ae121c571b1beacaf5ab1a2433</originalsourceid><addsrcrecordid>eNp9kM9L5DAUx8OisKPuf7CHsuCx9b2mbTqXBZH9ISheFMRLeE3TmQydpCSpg_71m6GyRw_hHfL5Jt_3Yew7QoGAzdWumNwhalWUgFUBWADHL2yFreA5L9vnE7YC4GVerxG-srMQdgDQcIQVe7mfx2imLQWdDaM7ZMHs55GicTZkbsgo27tXYzfpcja9edd91qXj9UZb7Sk6nxmbKEW-czaNKc5eZ7M18YKdDjQG_e1jnrOn378eb_7mdw9_bm-u73JVCYh53_G-HhpetxUXWIkKca2IWhIkhh7LHkCUwEljiaoW2GGnSdFQU4dUVpyfsx_Luy5EI4MyycRWOWu1ihKxEQ1vElQtkPIuBK8HOXmzJ_8mEeRRotzJRaI8SpSAMklMscslNlFQNA6erDLhf7ZshahT7cT9XDidFn012h97aKt0b_yxRu_M5x_9A13LioE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit</title><source>Elsevier ScienceDirect Journals</source><creator>Sarkar, Avik ; Pan, Wenxiao ; Suh, DongMyung ; Huckaby, E. David ; Sun, Xin</creator><creatorcontrib>Sarkar, Avik ; Pan, Wenxiao ; Suh, DongMyung ; Huckaby, E. David ; Sun, Xin ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible for extracting CO2 from CO2-loaded particles before the sorbent is recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the flow regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.</description><identifier>ISSN: 0032-5910</identifier><identifier>EISSN: 1873-328X</identifier><identifier>DOI: 10.1016/j.powtec.2014.01.031</identifier><identifier>CODEN: POTEBX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>01 COAL, LIGNITE, AND PEAT ; Applied sciences ; Carbon capture ; Chemical engineering ; Computational fluid dynamics ; ENVIRONMENTAL SCIENCES ; Exact sciences and technology ; Fluidization ; Hydrodynamics of contact apparatus ; Miscellaneous ; Moving bed ; Multi-phase flow ; Regenerator ; Solid-solid systems</subject><ispartof>Powder technology, 2014-10, Vol.265, p.35-46</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-db3d5f63584371474119caa8a7a7fd12d007203ae121c571b1beacaf5ab1a2433</citedby><cites>FETCH-LOGICAL-c470t-db3d5f63584371474119caa8a7a7fd12d007203ae121c571b1beacaf5ab1a2433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0032591014000400$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,776,780,785,786,881,3536,23910,23911,25119,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28775437$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1167636$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarkar, Avik</creatorcontrib><creatorcontrib>Pan, Wenxiao</creatorcontrib><creatorcontrib>Suh, DongMyung</creatorcontrib><creatorcontrib>Huckaby, E. David</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit</title><title>Powder technology</title><description>To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible for extracting CO2 from CO2-loaded particles before the sorbent is recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the flow regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.</description><subject>01 COAL, LIGNITE, AND PEAT</subject><subject>Applied sciences</subject><subject>Carbon capture</subject><subject>Chemical engineering</subject><subject>Computational fluid dynamics</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Exact sciences and technology</subject><subject>Fluidization</subject><subject>Hydrodynamics of contact apparatus</subject><subject>Miscellaneous</subject><subject>Moving bed</subject><subject>Multi-phase flow</subject><subject>Regenerator</subject><subject>Solid-solid systems</subject><issn>0032-5910</issn><issn>1873-328X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM9L5DAUx8OisKPuf7CHsuCx9b2mbTqXBZH9ISheFMRLeE3TmQydpCSpg_71m6GyRw_hHfL5Jt_3Yew7QoGAzdWumNwhalWUgFUBWADHL2yFreA5L9vnE7YC4GVerxG-srMQdgDQcIQVe7mfx2imLQWdDaM7ZMHs55GicTZkbsgo27tXYzfpcja9edd91qXj9UZb7Sk6nxmbKEW-czaNKc5eZ7M18YKdDjQG_e1jnrOn378eb_7mdw9_bm-u73JVCYh53_G-HhpetxUXWIkKca2IWhIkhh7LHkCUwEljiaoW2GGnSdFQU4dUVpyfsx_Luy5EI4MyycRWOWu1ihKxEQ1vElQtkPIuBK8HOXmzJ_8mEeRRotzJRaI8SpSAMklMscslNlFQNA6erDLhf7ZshahT7cT9XDidFn012h97aKt0b_yxRu_M5x_9A13LioE</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Sarkar, Avik</creator><creator>Pan, Wenxiao</creator><creator>Suh, DongMyung</creator><creator>Huckaby, E. David</creator><creator>Sun, Xin</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20141001</creationdate><title>Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit</title><author>Sarkar, Avik ; Pan, Wenxiao ; Suh, DongMyung ; Huckaby, E. David ; Sun, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-db3d5f63584371474119caa8a7a7fd12d007203ae121c571b1beacaf5ab1a2433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>01 COAL, LIGNITE, AND PEAT</topic><topic>Applied sciences</topic><topic>Carbon capture</topic><topic>Chemical engineering</topic><topic>Computational fluid dynamics</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Exact sciences and technology</topic><topic>Fluidization</topic><topic>Hydrodynamics of contact apparatus</topic><topic>Miscellaneous</topic><topic>Moving bed</topic><topic>Multi-phase flow</topic><topic>Regenerator</topic><topic>Solid-solid systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarkar, Avik</creatorcontrib><creatorcontrib>Pan, Wenxiao</creatorcontrib><creatorcontrib>Suh, DongMyung</creatorcontrib><creatorcontrib>Huckaby, E. David</creatorcontrib><creatorcontrib>Sun, Xin</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Powder technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarkar, Avik</au><au>Pan, Wenxiao</au><au>Suh, DongMyung</au><au>Huckaby, E. David</au><au>Sun, Xin</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit</atitle><jtitle>Powder technology</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>265</volume><spage>35</spage><epage>46</epage><pages>35-46</pages><issn>0032-5910</issn><eissn>1873-328X</eissn><coden>POTEBX</coden><abstract>To accelerate the commercialization and deployment of carbon capture technologies, computational fluid dynamics (CFD)-based tools may be used to model and analyze the performance of carbon capture devices. This work presents multiphase CFD flow simulations for the regenerator—a device responsible for extracting CO2 from CO2-loaded particles before the sorbent is recycled. The use of solid particle sorbents in this design is a departure from previously reported systems, where aqueous sorbents are employed. Another new feature is the inclusion of a series of perforated plates along the regenerator height. The influence of these plates on sorbent distribution is examined for varying sorbent holdup, fluidizing gas velocity, and particle size. The residence time distribution of sorbents is also measured to classify the flow regime as plug flow or well-mixed flow. The purpose of this work is to better understand the sorbent flow characteristics before reaction kinetics of CO2 desorption can be implemented.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.powtec.2014.01.031</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0032-5910
ispartof Powder technology, 2014-10, Vol.265, p.35-46
issn 0032-5910
1873-328X
language eng
recordid cdi_osti_scitechconnect_1167636
source Elsevier ScienceDirect Journals
subjects 01 COAL, LIGNITE, AND PEAT
Applied sciences
Carbon capture
Chemical engineering
Computational fluid dynamics
ENVIRONMENTAL SCIENCES
Exact sciences and technology
Fluidization
Hydrodynamics of contact apparatus
Miscellaneous
Moving bed
Multi-phase flow
Regenerator
Solid-solid systems
title Multiphase flow simulations of a moving fluidized bed regenerator in a carbon capture unit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T15%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiphase%20flow%20simulations%20of%20a%20moving%20fluidized%20bed%20regenerator%20in%20a%20carbon%20capture%20unit&rft.jtitle=Powder%20technology&rft.au=Sarkar,%20Avik&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2014-10-01&rft.volume=265&rft.spage=35&rft.epage=46&rft.pages=35-46&rft.issn=0032-5910&rft.eissn=1873-328X&rft.coden=POTEBX&rft_id=info:doi/10.1016/j.powtec.2014.01.031&rft_dat=%3Celsevier_osti_%3ES0032591014000400%3C/elsevier_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0032591014000400&rfr_iscdi=true