Cr(OH)3(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation

We examined the feasibility of Cr­(OH)3(s) oxidation mediated by surface catalyzed Mn­(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr­(VI) contaminations. Dissolved Mn­(II) (50 μM) was reacted with or without synthesized Cr­(OH)3(s) (1.0 g/L) at pH 7.0–9.0...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2014-09, Vol.48 (18), p.10760-10768
Hauptverfasser: Namgung, Seonyi, Kwon, Man Jae, Qafoku, Nikolla P, Lee, Giehyeon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10768
container_issue 18
container_start_page 10760
container_title Environmental science & technology
container_volume 48
creator Namgung, Seonyi
Kwon, Man Jae
Qafoku, Nikolla P
Lee, Giehyeon
description We examined the feasibility of Cr­(OH)3(s) oxidation mediated by surface catalyzed Mn­(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr­(VI) contaminations. Dissolved Mn­(II) (50 μM) was reacted with or without synthesized Cr­(OH)3(s) (1.0 g/L) at pH 7.0–9.0 under oxic or anoxic conditions. Homogeneous Mn­(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn­(II) was completely removed within 8 days and precipitated as hausmannite. When Cr­(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr­(VI) as dissolved Mn­(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr­(VI) was attributed to Cr­(OH)3(s) oxidation by a newly formed Mn oxide via Mn­(II) oxidation catalyzed on Cr­(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn­(II) oxidation produced a mixed valence Mn­(III/IV) solid phase. Our results suggest that toxic Cr­(VI) can be naturally produced via Cr­(OH)3(s) oxidation coupled with the oxidation of dissolved Mn­(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr­(OH)3(s), which has been considered the most common and a stable remediation product of Cr­(VI) contamination.
doi_str_mv 10.1021/es503018u
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1166857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>a478507252</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-8ffc4fbe5412a6dd0c05d88c57b9a5ec21045ba1ffe65e5a46097db21f76362c3</originalsourceid><addsrcrecordid>eNpt0M1Kw0AUBeBBFFurC19AgiC0i-i9M5lJutSgNlDpQgV3w2R-MKVNSiYB49MbiRYXri5cPg6cQ8g5wjUCxRvrOTDApD0gY-QUQp5wPCRjAGThnIm3ETnxfg0AlEFyTEaUYxQxgDG5S-vpajFjUz8LVh-FUU1RlUFWmlZbE-Rd8NzWTmkbpKpRm-6zfz6V0yz7o0_JkVMbb89-7oS8Pty_pItwuXrM0ttlqBhlTZg4pyOXWx4hVcIY0MBNkmge53PFraYIEc8VOmcFt1xFAuaxySm6WDBBNZuQyyG38k0hvS4aq991VZZWNxJRiITHPZoNSNeV97V1clcXW1V3EkF-jyX3Y_X2YrC7Nt9as5e_6_TgagBKe7mu2rrs-_0T9AUnmm3v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cr(OH)3(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation</title><source>MEDLINE</source><source>ACS Publications</source><creator>Namgung, Seonyi ; Kwon, Man Jae ; Qafoku, Nikolla P ; Lee, Giehyeon</creator><creatorcontrib>Namgung, Seonyi ; Kwon, Man Jae ; Qafoku, Nikolla P ; Lee, Giehyeon ; Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><description>We examined the feasibility of Cr­(OH)3(s) oxidation mediated by surface catalyzed Mn­(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr­(VI) contaminations. Dissolved Mn­(II) (50 μM) was reacted with or without synthesized Cr­(OH)3(s) (1.0 g/L) at pH 7.0–9.0 under oxic or anoxic conditions. Homogeneous Mn­(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn­(II) was completely removed within 8 days and precipitated as hausmannite. When Cr­(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr­(VI) as dissolved Mn­(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr­(VI) was attributed to Cr­(OH)3(s) oxidation by a newly formed Mn oxide via Mn­(II) oxidation catalyzed on Cr­(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn­(II) oxidation produced a mixed valence Mn­(III/IV) solid phase. Our results suggest that toxic Cr­(VI) can be naturally produced via Cr­(OH)3(s) oxidation coupled with the oxidation of dissolved Mn­(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr­(OH)3(s), which has been considered the most common and a stable remediation product of Cr­(VI) contamination.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es503018u</identifier><identifier>PMID: 25144300</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Catalysis ; Chemical Precipitation ; Chromium - chemistry ; Cr(III) ; Cr(III) oxidation ; Cr(VI) contamination ; Environment ; ENVIRONMENTAL SCIENCES ; Manganese - chemistry ; Mn(II) oxidation ; Oxidation-Reduction ; Solutions ; surface sorbed Mn ; Suspensions ; Time Factors ; X-Ray Absorption Spectroscopy ; X-Ray Diffraction</subject><ispartof>Environmental science &amp; technology, 2014-09, Vol.48 (18), p.10760-10768</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-8ffc4fbe5412a6dd0c05d88c57b9a5ec21045ba1ffe65e5a46097db21f76362c3</citedby><cites>FETCH-LOGICAL-a323t-8ffc4fbe5412a6dd0c05d88c57b9a5ec21045ba1ffe65e5a46097db21f76362c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es503018u$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es503018u$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25144300$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1166857$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Namgung, Seonyi</creatorcontrib><creatorcontrib>Kwon, Man Jae</creatorcontrib><creatorcontrib>Qafoku, Nikolla P</creatorcontrib><creatorcontrib>Lee, Giehyeon</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><title>Cr(OH)3(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>We examined the feasibility of Cr­(OH)3(s) oxidation mediated by surface catalyzed Mn­(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr­(VI) contaminations. Dissolved Mn­(II) (50 μM) was reacted with or without synthesized Cr­(OH)3(s) (1.0 g/L) at pH 7.0–9.0 under oxic or anoxic conditions. Homogeneous Mn­(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn­(II) was completely removed within 8 days and precipitated as hausmannite. When Cr­(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr­(VI) as dissolved Mn­(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr­(VI) was attributed to Cr­(OH)3(s) oxidation by a newly formed Mn oxide via Mn­(II) oxidation catalyzed on Cr­(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn­(II) oxidation produced a mixed valence Mn­(III/IV) solid phase. Our results suggest that toxic Cr­(VI) can be naturally produced via Cr­(OH)3(s) oxidation coupled with the oxidation of dissolved Mn­(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr­(OH)3(s), which has been considered the most common and a stable remediation product of Cr­(VI) contamination.</description><subject>Catalysis</subject><subject>Chemical Precipitation</subject><subject>Chromium - chemistry</subject><subject>Cr(III)</subject><subject>Cr(III) oxidation</subject><subject>Cr(VI) contamination</subject><subject>Environment</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Manganese - chemistry</subject><subject>Mn(II) oxidation</subject><subject>Oxidation-Reduction</subject><subject>Solutions</subject><subject>surface sorbed Mn</subject><subject>Suspensions</subject><subject>Time Factors</subject><subject>X-Ray Absorption Spectroscopy</subject><subject>X-Ray Diffraction</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1Kw0AUBeBBFFurC19AgiC0i-i9M5lJutSgNlDpQgV3w2R-MKVNSiYB49MbiRYXri5cPg6cQ8g5wjUCxRvrOTDApD0gY-QUQp5wPCRjAGThnIm3ETnxfg0AlEFyTEaUYxQxgDG5S-vpajFjUz8LVh-FUU1RlUFWmlZbE-Rd8NzWTmkbpKpRm-6zfz6V0yz7o0_JkVMbb89-7oS8Pty_pItwuXrM0ttlqBhlTZg4pyOXWx4hVcIY0MBNkmge53PFraYIEc8VOmcFt1xFAuaxySm6WDBBNZuQyyG38k0hvS4aq991VZZWNxJRiITHPZoNSNeV97V1clcXW1V3EkF-jyX3Y_X2YrC7Nt9as5e_6_TgagBKe7mu2rrs-_0T9AUnmm3v</recordid><startdate>20140916</startdate><enddate>20140916</enddate><creator>Namgung, Seonyi</creator><creator>Kwon, Man Jae</creator><creator>Qafoku, Nikolla P</creator><creator>Lee, Giehyeon</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20140916</creationdate><title>Cr(OH)3(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation</title><author>Namgung, Seonyi ; Kwon, Man Jae ; Qafoku, Nikolla P ; Lee, Giehyeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-8ffc4fbe5412a6dd0c05d88c57b9a5ec21045ba1ffe65e5a46097db21f76362c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Catalysis</topic><topic>Chemical Precipitation</topic><topic>Chromium - chemistry</topic><topic>Cr(III)</topic><topic>Cr(III) oxidation</topic><topic>Cr(VI) contamination</topic><topic>Environment</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Manganese - chemistry</topic><topic>Mn(II) oxidation</topic><topic>Oxidation-Reduction</topic><topic>Solutions</topic><topic>surface sorbed Mn</topic><topic>Suspensions</topic><topic>Time Factors</topic><topic>X-Ray Absorption Spectroscopy</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Namgung, Seonyi</creatorcontrib><creatorcontrib>Kwon, Man Jae</creatorcontrib><creatorcontrib>Qafoku, Nikolla P</creatorcontrib><creatorcontrib>Lee, Giehyeon</creatorcontrib><creatorcontrib>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Namgung, Seonyi</au><au>Kwon, Man Jae</au><au>Qafoku, Nikolla P</au><au>Lee, Giehyeon</au><aucorp>Pacific Northwest National Lab. (PNNL), Richland, WA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cr(OH)3(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2014-09-16</date><risdate>2014</risdate><volume>48</volume><issue>18</issue><spage>10760</spage><epage>10768</epage><pages>10760-10768</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>We examined the feasibility of Cr­(OH)3(s) oxidation mediated by surface catalyzed Mn­(II) oxidation under common groundwater pH conditions as a potential pathway of natural Cr­(VI) contaminations. Dissolved Mn­(II) (50 μM) was reacted with or without synthesized Cr­(OH)3(s) (1.0 g/L) at pH 7.0–9.0 under oxic or anoxic conditions. Homogeneous Mn­(II) oxidation by dissolved O2 was not observed at pH ≤ 8.0 for 50 days. At pH 9.0, by contrast, dissolved Mn­(II) was completely removed within 8 days and precipitated as hausmannite. When Cr­(OH)3(s) was present, this solid was oxidized and released substantial amounts of Cr­(VI) as dissolved Mn­(II) was added into the suspension at pH ≥ 8.0 under oxic conditions. Production of Cr­(VI) was attributed to Cr­(OH)3(s) oxidation by a newly formed Mn oxide via Mn­(II) oxidation catalyzed on Cr­(OH)3(s) surface. XANES results indicated that this surface-catalyzed Mn­(II) oxidation produced a mixed valence Mn­(III/IV) solid phase. Our results suggest that toxic Cr­(VI) can be naturally produced via Cr­(OH)3(s) oxidation coupled with the oxidation of dissolved Mn­(II). In addition, this study evokes the potential environmental hazard of sparingly soluble Cr­(OH)3(s), which has been considered the most common and a stable remediation product of Cr­(VI) contamination.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25144300</pmid><doi>10.1021/es503018u</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-09, Vol.48 (18), p.10760-10768
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_1166857
source MEDLINE; ACS Publications
subjects Catalysis
Chemical Precipitation
Chromium - chemistry
Cr(III)
Cr(III) oxidation
Cr(VI) contamination
Environment
ENVIRONMENTAL SCIENCES
Manganese - chemistry
Mn(II) oxidation
Oxidation-Reduction
Solutions
surface sorbed Mn
Suspensions
Time Factors
X-Ray Absorption Spectroscopy
X-Ray Diffraction
title Cr(OH)3(s) Oxidation Induced by Surface Catalyzed Mn(II) Oxidation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cr(OH)3(s)%20Oxidation%20Induced%20by%20Surface%20Catalyzed%20Mn(II)%20Oxidation&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Namgung,%20Seonyi&rft.aucorp=Pacific%20Northwest%20National%20Lab.%20(PNNL),%20Richland,%20WA%20(United%20States)&rft.date=2014-09-16&rft.volume=48&rft.issue=18&rft.spage=10760&rft.epage=10768&rft.pages=10760-10768&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/es503018u&rft_dat=%3Cacs_osti_%3Ea478507252%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/25144300&rfr_iscdi=true