Accurate Amorphous Silica Surface Models from First-Principles Thermodynamics of Surface Dehydroxylation

Accurate atomically detailed models of amorphous materials have been elusive to-date due to limitations in both experimental data and computational methods. We present an approach for constructing atomistic models of amorphous silica surfaces encountered in many industrial applications (such as cata...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2014-05, Vol.30 (18), p.5133-5141
Hauptverfasser: Ewing, Christopher S, Bhavsar, Saurabh, Veser, Götz, McCarthy, Joseph J, Johnson, J. Karl
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5141
container_issue 18
container_start_page 5133
container_title Langmuir
container_volume 30
creator Ewing, Christopher S
Bhavsar, Saurabh
Veser, Götz
McCarthy, Joseph J
Johnson, J. Karl
description Accurate atomically detailed models of amorphous materials have been elusive to-date due to limitations in both experimental data and computational methods. We present an approach for constructing atomistic models of amorphous silica surfaces encountered in many industrial applications (such as catalytic support materials). We have used a combination of classical molecular modeling and density functional theory calculations to develop models having predictive capabilities. Our approach provides accurate surface models for a range of temperatures as measured by the thermodynamics of surface dehydroxylation. We find that a surprisingly small model of an amorphous silica surface can accurately represent the physics and chemistry of real surfaces as demonstrated by direct experimental validation using macroscopic measurements of the silanol number and type as a function of temperature. Beyond accurately predicting the experimentally observed trends in silanol numbers and types, the model also allows new insights into the dehydroxylation of amorphous silica surfaces. Our formalism is transferrable and provides an approach to generating accurate models of other amorphous materials.
doi_str_mv 10.1021/la500422p
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1165298</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524342420</sourcerecordid><originalsourceid>FETCH-LOGICAL-a342t-92f6e307f8b074e5381aefb87c61b3b32f29cdb0e5053a69ebc3e80a4c66dc5d3</originalsourceid><addsrcrecordid>eNptkEtr3DAUhUVJaSbTLvIHggkU0oVTvfxaDnk0hYQUZroW8vUV1mBbjmRD_e-jMsmssjqb7xwOHyHnjF4zytnPTmeUSs7HT2TFMk7TrOTFCVnRQoq0kLk4JWch7CmllZDVF3LKZVGJ2FyRdgMwez1hsumdH1s3h2RrOws62c7eaMDkyTXYhcR41yf31ocp_ePtAHbsMCS7Fn3vmmXQvYWQOHOs3WK7NN79Wzo9WTd8JZ-N7gJ-e8s1-Xt_t7t5SB-ff_2-2TymWkg-pRU3OQpamLKO7zETJdNo6rKAnNWiFtzwCpqaYkYzofMKaxBYUi0hzxvIGrEml4ddFyarAtgJoQU3DAiTYizPeFVG6OoAjd69zBgm1dsA2HV6wGhARYky3pGcRvTHAQXvQvBo1Ohtr_2iGFX_7auj_chevM3OdY_NkXzXHYHvB0BDUHs3-yGq-GDoFfScjHE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524342420</pqid></control><display><type>article</type><title>Accurate Amorphous Silica Surface Models from First-Principles Thermodynamics of Surface Dehydroxylation</title><source>ACS Publications</source><creator>Ewing, Christopher S ; Bhavsar, Saurabh ; Veser, Götz ; McCarthy, Joseph J ; Johnson, J. Karl</creator><creatorcontrib>Ewing, Christopher S ; Bhavsar, Saurabh ; Veser, Götz ; McCarthy, Joseph J ; Johnson, J. Karl ; National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</creatorcontrib><description>Accurate atomically detailed models of amorphous materials have been elusive to-date due to limitations in both experimental data and computational methods. We present an approach for constructing atomistic models of amorphous silica surfaces encountered in many industrial applications (such as catalytic support materials). We have used a combination of classical molecular modeling and density functional theory calculations to develop models having predictive capabilities. Our approach provides accurate surface models for a range of temperatures as measured by the thermodynamics of surface dehydroxylation. We find that a surprisingly small model of an amorphous silica surface can accurately represent the physics and chemistry of real surfaces as demonstrated by direct experimental validation using macroscopic measurements of the silanol number and type as a function of temperature. Beyond accurately predicting the experimentally observed trends in silanol numbers and types, the model also allows new insights into the dehydroxylation of amorphous silica surfaces. Our formalism is transferrable and provides an approach to generating accurate models of other amorphous materials.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la500422p</identifier><identifier>PMID: 24793021</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Langmuir, 2014-05, Vol.30 (18), p.5133-5141</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a342t-92f6e307f8b074e5381aefb87c61b3b32f29cdb0e5053a69ebc3e80a4c66dc5d3</citedby><cites>FETCH-LOGICAL-a342t-92f6e307f8b074e5381aefb87c61b3b32f29cdb0e5053a69ebc3e80a4c66dc5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la500422p$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la500422p$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24793021$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1165298$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Ewing, Christopher S</creatorcontrib><creatorcontrib>Bhavsar, Saurabh</creatorcontrib><creatorcontrib>Veser, Götz</creatorcontrib><creatorcontrib>McCarthy, Joseph J</creatorcontrib><creatorcontrib>Johnson, J. Karl</creatorcontrib><creatorcontrib>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</creatorcontrib><title>Accurate Amorphous Silica Surface Models from First-Principles Thermodynamics of Surface Dehydroxylation</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>Accurate atomically detailed models of amorphous materials have been elusive to-date due to limitations in both experimental data and computational methods. We present an approach for constructing atomistic models of amorphous silica surfaces encountered in many industrial applications (such as catalytic support materials). We have used a combination of classical molecular modeling and density functional theory calculations to develop models having predictive capabilities. Our approach provides accurate surface models for a range of temperatures as measured by the thermodynamics of surface dehydroxylation. We find that a surprisingly small model of an amorphous silica surface can accurately represent the physics and chemistry of real surfaces as demonstrated by direct experimental validation using macroscopic measurements of the silanol number and type as a function of temperature. Beyond accurately predicting the experimentally observed trends in silanol numbers and types, the model also allows new insights into the dehydroxylation of amorphous silica surfaces. Our formalism is transferrable and provides an approach to generating accurate models of other amorphous materials.</description><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkEtr3DAUhUVJaSbTLvIHggkU0oVTvfxaDnk0hYQUZroW8vUV1mBbjmRD_e-jMsmssjqb7xwOHyHnjF4zytnPTmeUSs7HT2TFMk7TrOTFCVnRQoq0kLk4JWch7CmllZDVF3LKZVGJ2FyRdgMwez1hsumdH1s3h2RrOws62c7eaMDkyTXYhcR41yf31ocp_ePtAHbsMCS7Fn3vmmXQvYWQOHOs3WK7NN79Wzo9WTd8JZ-N7gJ-e8s1-Xt_t7t5SB-ff_2-2TymWkg-pRU3OQpamLKO7zETJdNo6rKAnNWiFtzwCpqaYkYzofMKaxBYUi0hzxvIGrEml4ddFyarAtgJoQU3DAiTYizPeFVG6OoAjd69zBgm1dsA2HV6wGhARYky3pGcRvTHAQXvQvBo1Ohtr_2iGFX_7auj_chevM3OdY_NkXzXHYHvB0BDUHs3-yGq-GDoFfScjHE</recordid><startdate>20140513</startdate><enddate>20140513</enddate><creator>Ewing, Christopher S</creator><creator>Bhavsar, Saurabh</creator><creator>Veser, Götz</creator><creator>McCarthy, Joseph J</creator><creator>Johnson, J. Karl</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140513</creationdate><title>Accurate Amorphous Silica Surface Models from First-Principles Thermodynamics of Surface Dehydroxylation</title><author>Ewing, Christopher S ; Bhavsar, Saurabh ; Veser, Götz ; McCarthy, Joseph J ; Johnson, J. Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a342t-92f6e307f8b074e5381aefb87c61b3b32f29cdb0e5053a69ebc3e80a4c66dc5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ewing, Christopher S</creatorcontrib><creatorcontrib>Bhavsar, Saurabh</creatorcontrib><creatorcontrib>Veser, Götz</creatorcontrib><creatorcontrib>McCarthy, Joseph J</creatorcontrib><creatorcontrib>Johnson, J. Karl</creatorcontrib><creatorcontrib>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ewing, Christopher S</au><au>Bhavsar, Saurabh</au><au>Veser, Götz</au><au>McCarthy, Joseph J</au><au>Johnson, J. Karl</au><aucorp>National Energy Technology Lab. (NETL), Pittsburgh, PA, and Morgantown, WV (United States). In-house Research</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accurate Amorphous Silica Surface Models from First-Principles Thermodynamics of Surface Dehydroxylation</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2014-05-13</date><risdate>2014</risdate><volume>30</volume><issue>18</issue><spage>5133</spage><epage>5141</epage><pages>5133-5141</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><abstract>Accurate atomically detailed models of amorphous materials have been elusive to-date due to limitations in both experimental data and computational methods. We present an approach for constructing atomistic models of amorphous silica surfaces encountered in many industrial applications (such as catalytic support materials). We have used a combination of classical molecular modeling and density functional theory calculations to develop models having predictive capabilities. Our approach provides accurate surface models for a range of temperatures as measured by the thermodynamics of surface dehydroxylation. We find that a surprisingly small model of an amorphous silica surface can accurately represent the physics and chemistry of real surfaces as demonstrated by direct experimental validation using macroscopic measurements of the silanol number and type as a function of temperature. Beyond accurately predicting the experimentally observed trends in silanol numbers and types, the model also allows new insights into the dehydroxylation of amorphous silica surfaces. Our formalism is transferrable and provides an approach to generating accurate models of other amorphous materials.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24793021</pmid><doi>10.1021/la500422p</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2014-05, Vol.30 (18), p.5133-5141
issn 0743-7463
1520-5827
language eng
recordid cdi_osti_scitechconnect_1165298
source ACS Publications
title Accurate Amorphous Silica Surface Models from First-Principles Thermodynamics of Surface Dehydroxylation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A36%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accurate%20Amorphous%20Silica%20Surface%20Models%20from%20First-Principles%20Thermodynamics%20of%20Surface%20Dehydroxylation&rft.jtitle=Langmuir&rft.au=Ewing,%20Christopher%20S&rft.aucorp=National%20Energy%20Technology%20Lab.%20(NETL),%20Pittsburgh,%20PA,%20and%20Morgantown,%20WV%20(United%20States).%20In-house%20Research&rft.date=2014-05-13&rft.volume=30&rft.issue=18&rft.spage=5133&rft.epage=5141&rft.pages=5133-5141&rft.issn=0743-7463&rft.eissn=1520-5827&rft_id=info:doi/10.1021/la500422p&rft_dat=%3Cproquest_osti_%3E1524342420%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524342420&rft_id=info:pmid/24793021&rfr_iscdi=true