How Strain Affects the Reactivity of Surface Metal Oxide Catalysts

Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm−2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie (International ed.) 2013-12, Vol.52 (51), p.13553-13557
Hauptverfasser: Amakawa, Kazuhiko, Sun, Lili, Guo, Chunsheng, Hävecker, Michael, Kube, Pierre, Wachs, Israel E., Lwin, Soe, Frenkel, Anatoly I., Patlolla, Anitha, Hermann, Klaus, Schlögl, Robert, Trunschke, Annette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13557
container_issue 51
container_start_page 13553
container_title Angewandte Chemie (International ed.)
container_volume 52
creator Amakawa, Kazuhiko
Sun, Lili
Guo, Chunsheng
Hävecker, Michael
Kube, Pierre
Wachs, Israel E.
Lwin, Soe
Frenkel, Anatoly I.
Patlolla, Anitha
Hermann, Klaus
Schlögl, Robert
Trunschke, Annette
description Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm−2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity. Only uncomfortable seats left: At high surface coverages of molybdenum oxide, at which surface hydroxy anchoring sites are limited, surface metal oxide molecules are forced to be anchored in strained/frustrated configurations. This strain leads to increased reactivity and explains the non‐linear coverage dependence sometimes observed in monolayer‐type supported metal oxide catalysts.
doi_str_mv 10.1002/anie.201306620
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1162651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1469640516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6140-6b86d8f3356c800c07f7d38b0884ee6c71348ee1a47e882886062c80f24164213</originalsourceid><addsrcrecordid>eNqF0cFvFCEUBnBiNLZWrx7NRC9eZuUBA8xx3dRtTW0Tq6k3wrKPlDo7U4Gx3f9eNlM3xksPBA6_9-WRj5DXQGdAKftg-4AzRoFTKRl9Qg6hYVBzpfjT8hac10o3cEBepHRTvNZUPicHTLCmLeeQfDwZ7qrLHG3oq7n36HKq8jVWX9G6HH6HvK0GX12O0VuH1RfMtqsu7sMaq4Ut723K6SV55m2X8NXDfUS-fzr-tjipzy6Wp4v5We0kCFrLlZZr7TlvpNOUOqq8WnO9oloLROkUcKERwQqFWpdNJZWsSM8ESMGAH5G3U-6QcjDJhYzu2g19X5Y2AJLJZofeT-g2Dr9GTNlsQnLYdbbHYUwGFAVglGr-OBWylYI2IAt99x-9GcbYl9_uVNm0Fa0uajYpF4eUInpzG8PGxq0BanZtmV1bZt9WGXjzEDuuNrje87_1FNBO4C50uH0kzszPT4__Da-n2ZAy3u9nbfxppOKqMVfnS9Potv2xvPpsWv4HK0KrMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468609498</pqid></control><display><type>article</type><title>How Strain Affects the Reactivity of Surface Metal Oxide Catalysts</title><source>Wiley Online Library</source><creator>Amakawa, Kazuhiko ; Sun, Lili ; Guo, Chunsheng ; Hävecker, Michael ; Kube, Pierre ; Wachs, Israel E. ; Lwin, Soe ; Frenkel, Anatoly I. ; Patlolla, Anitha ; Hermann, Klaus ; Schlögl, Robert ; Trunschke, Annette</creator><creatorcontrib>Amakawa, Kazuhiko ; Sun, Lili ; Guo, Chunsheng ; Hävecker, Michael ; Kube, Pierre ; Wachs, Israel E. ; Lwin, Soe ; Frenkel, Anatoly I. ; Patlolla, Anitha ; Hermann, Klaus ; Schlögl, Robert ; Trunschke, Annette ; Brookhaven National Laboratory (BNL)</creatorcontrib><description>Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm−2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity. Only uncomfortable seats left: At high surface coverages of molybdenum oxide, at which surface hydroxy anchoring sites are limited, surface metal oxide molecules are forced to be anchored in strained/frustrated configurations. This strain leads to increased reactivity and explains the non‐linear coverage dependence sometimes observed in monolayer‐type supported metal oxide catalysts.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201306620</identifier><identifier>PMID: 24259425</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Anchors ; Catalysis ; Catalysts ; Density ; heterogeneous catalysis ; Metal oxides ; molybdenum ; Molybdenum oxides ; olefin metathesis ; oxidation ; Spectrum analysis ; Strain ; supported catalysts ; Surface chemistry</subject><ispartof>Angewandte Chemie (International ed.), 2013-12, Vol.52 (51), p.13553-13557</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6140-6b86d8f3356c800c07f7d38b0884ee6c71348ee1a47e882886062c80f24164213</citedby><cites>FETCH-LOGICAL-c6140-6b86d8f3356c800c07f7d38b0884ee6c71348ee1a47e882886062c80f24164213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201306620$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201306620$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24259425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1162651$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Amakawa, Kazuhiko</creatorcontrib><creatorcontrib>Sun, Lili</creatorcontrib><creatorcontrib>Guo, Chunsheng</creatorcontrib><creatorcontrib>Hävecker, Michael</creatorcontrib><creatorcontrib>Kube, Pierre</creatorcontrib><creatorcontrib>Wachs, Israel E.</creatorcontrib><creatorcontrib>Lwin, Soe</creatorcontrib><creatorcontrib>Frenkel, Anatoly I.</creatorcontrib><creatorcontrib>Patlolla, Anitha</creatorcontrib><creatorcontrib>Hermann, Klaus</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Trunschke, Annette</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL)</creatorcontrib><title>How Strain Affects the Reactivity of Surface Metal Oxide Catalysts</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm−2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity. Only uncomfortable seats left: At high surface coverages of molybdenum oxide, at which surface hydroxy anchoring sites are limited, surface metal oxide molecules are forced to be anchored in strained/frustrated configurations. This strain leads to increased reactivity and explains the non‐linear coverage dependence sometimes observed in monolayer‐type supported metal oxide catalysts.</description><subject>Anchors</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Density</subject><subject>heterogeneous catalysis</subject><subject>Metal oxides</subject><subject>molybdenum</subject><subject>Molybdenum oxides</subject><subject>olefin metathesis</subject><subject>oxidation</subject><subject>Spectrum analysis</subject><subject>Strain</subject><subject>supported catalysts</subject><subject>Surface chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0cFvFCEUBnBiNLZWrx7NRC9eZuUBA8xx3dRtTW0Tq6k3wrKPlDo7U4Gx3f9eNlM3xksPBA6_9-WRj5DXQGdAKftg-4AzRoFTKRl9Qg6hYVBzpfjT8hac10o3cEBepHRTvNZUPicHTLCmLeeQfDwZ7qrLHG3oq7n36HKq8jVWX9G6HH6HvK0GX12O0VuH1RfMtqsu7sMaq4Ut723K6SV55m2X8NXDfUS-fzr-tjipzy6Wp4v5We0kCFrLlZZr7TlvpNOUOqq8WnO9oloLROkUcKERwQqFWpdNJZWsSM8ESMGAH5G3U-6QcjDJhYzu2g19X5Y2AJLJZofeT-g2Dr9GTNlsQnLYdbbHYUwGFAVglGr-OBWylYI2IAt99x-9GcbYl9_uVNm0Fa0uajYpF4eUInpzG8PGxq0BanZtmV1bZt9WGXjzEDuuNrje87_1FNBO4C50uH0kzszPT4__Da-n2ZAy3u9nbfxppOKqMVfnS9Potv2xvPpsWv4HK0KrMA</recordid><startdate>20131216</startdate><enddate>20131216</enddate><creator>Amakawa, Kazuhiko</creator><creator>Sun, Lili</creator><creator>Guo, Chunsheng</creator><creator>Hävecker, Michael</creator><creator>Kube, Pierre</creator><creator>Wachs, Israel E.</creator><creator>Lwin, Soe</creator><creator>Frenkel, Anatoly I.</creator><creator>Patlolla, Anitha</creator><creator>Hermann, Klaus</creator><creator>Schlögl, Robert</creator><creator>Trunschke, Annette</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20131216</creationdate><title>How Strain Affects the Reactivity of Surface Metal Oxide Catalysts</title><author>Amakawa, Kazuhiko ; Sun, Lili ; Guo, Chunsheng ; Hävecker, Michael ; Kube, Pierre ; Wachs, Israel E. ; Lwin, Soe ; Frenkel, Anatoly I. ; Patlolla, Anitha ; Hermann, Klaus ; Schlögl, Robert ; Trunschke, Annette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6140-6b86d8f3356c800c07f7d38b0884ee6c71348ee1a47e882886062c80f24164213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anchors</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Density</topic><topic>heterogeneous catalysis</topic><topic>Metal oxides</topic><topic>molybdenum</topic><topic>Molybdenum oxides</topic><topic>olefin metathesis</topic><topic>oxidation</topic><topic>Spectrum analysis</topic><topic>Strain</topic><topic>supported catalysts</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amakawa, Kazuhiko</creatorcontrib><creatorcontrib>Sun, Lili</creatorcontrib><creatorcontrib>Guo, Chunsheng</creatorcontrib><creatorcontrib>Hävecker, Michael</creatorcontrib><creatorcontrib>Kube, Pierre</creatorcontrib><creatorcontrib>Wachs, Israel E.</creatorcontrib><creatorcontrib>Lwin, Soe</creatorcontrib><creatorcontrib>Frenkel, Anatoly I.</creatorcontrib><creatorcontrib>Patlolla, Anitha</creatorcontrib><creatorcontrib>Hermann, Klaus</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Trunschke, Annette</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL)</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amakawa, Kazuhiko</au><au>Sun, Lili</au><au>Guo, Chunsheng</au><au>Hävecker, Michael</au><au>Kube, Pierre</au><au>Wachs, Israel E.</au><au>Lwin, Soe</au><au>Frenkel, Anatoly I.</au><au>Patlolla, Anitha</au><au>Hermann, Klaus</au><au>Schlögl, Robert</au><au>Trunschke, Annette</au><aucorp>Brookhaven National Laboratory (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Strain Affects the Reactivity of Surface Metal Oxide Catalysts</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2013-12-16</date><risdate>2013</risdate><volume>52</volume><issue>51</issue><spage>13553</spage><epage>13557</epage><pages>13553-13557</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm−2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity. Only uncomfortable seats left: At high surface coverages of molybdenum oxide, at which surface hydroxy anchoring sites are limited, surface metal oxide molecules are forced to be anchored in strained/frustrated configurations. This strain leads to increased reactivity and explains the non‐linear coverage dependence sometimes observed in monolayer‐type supported metal oxide catalysts.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24259425</pmid><doi>10.1002/anie.201306620</doi><tpages>5</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie (International ed.), 2013-12, Vol.52 (51), p.13553-13557
issn 1433-7851
1521-3773
language eng
recordid cdi_osti_scitechconnect_1162651
source Wiley Online Library
subjects Anchors
Catalysis
Catalysts
Density
heterogeneous catalysis
Metal oxides
molybdenum
Molybdenum oxides
olefin metathesis
oxidation
Spectrum analysis
Strain
supported catalysts
Surface chemistry
title How Strain Affects the Reactivity of Surface Metal Oxide Catalysts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Strain%20Affects%20the%20Reactivity%20of%20Surface%20Metal%20Oxide%20Catalysts&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Amakawa,%20Kazuhiko&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)&rft.date=2013-12-16&rft.volume=52&rft.issue=51&rft.spage=13553&rft.epage=13557&rft.pages=13553-13557&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201306620&rft_dat=%3Cproquest_osti_%3E1469640516%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468609498&rft_id=info:pmid/24259425&rfr_iscdi=true