How Strain Affects the Reactivity of Surface Metal Oxide Catalysts
Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm−2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie (International ed.) 2013-12, Vol.52 (51), p.13553-13557 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13557 |
---|---|
container_issue | 51 |
container_start_page | 13553 |
container_title | Angewandte Chemie (International ed.) |
container_volume | 52 |
creator | Amakawa, Kazuhiko Sun, Lili Guo, Chunsheng Hävecker, Michael Kube, Pierre Wachs, Israel E. Lwin, Soe Frenkel, Anatoly I. Patlolla, Anitha Hermann, Klaus Schlögl, Robert Trunschke, Annette |
description | Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm−2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.
Only uncomfortable seats left: At high surface coverages of molybdenum oxide, at which surface hydroxy anchoring sites are limited, surface metal oxide molecules are forced to be anchored in strained/frustrated configurations. This strain leads to increased reactivity and explains the non‐linear coverage dependence sometimes observed in monolayer‐type supported metal oxide catalysts. |
doi_str_mv | 10.1002/anie.201306620 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1162651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1469640516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6140-6b86d8f3356c800c07f7d38b0884ee6c71348ee1a47e882886062c80f24164213</originalsourceid><addsrcrecordid>eNqF0cFvFCEUBnBiNLZWrx7NRC9eZuUBA8xx3dRtTW0Tq6k3wrKPlDo7U4Gx3f9eNlM3xksPBA6_9-WRj5DXQGdAKftg-4AzRoFTKRl9Qg6hYVBzpfjT8hac10o3cEBepHRTvNZUPicHTLCmLeeQfDwZ7qrLHG3oq7n36HKq8jVWX9G6HH6HvK0GX12O0VuH1RfMtqsu7sMaq4Ut723K6SV55m2X8NXDfUS-fzr-tjipzy6Wp4v5We0kCFrLlZZr7TlvpNOUOqq8WnO9oloLROkUcKERwQqFWpdNJZWsSM8ESMGAH5G3U-6QcjDJhYzu2g19X5Y2AJLJZofeT-g2Dr9GTNlsQnLYdbbHYUwGFAVglGr-OBWylYI2IAt99x-9GcbYl9_uVNm0Fa0uajYpF4eUInpzG8PGxq0BanZtmV1bZt9WGXjzEDuuNrje87_1FNBO4C50uH0kzszPT4__Da-n2ZAy3u9nbfxppOKqMVfnS9Potv2xvPpsWv4HK0KrMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1468609498</pqid></control><display><type>article</type><title>How Strain Affects the Reactivity of Surface Metal Oxide Catalysts</title><source>Wiley Online Library</source><creator>Amakawa, Kazuhiko ; Sun, Lili ; Guo, Chunsheng ; Hävecker, Michael ; Kube, Pierre ; Wachs, Israel E. ; Lwin, Soe ; Frenkel, Anatoly I. ; Patlolla, Anitha ; Hermann, Klaus ; Schlögl, Robert ; Trunschke, Annette</creator><creatorcontrib>Amakawa, Kazuhiko ; Sun, Lili ; Guo, Chunsheng ; Hävecker, Michael ; Kube, Pierre ; Wachs, Israel E. ; Lwin, Soe ; Frenkel, Anatoly I. ; Patlolla, Anitha ; Hermann, Klaus ; Schlögl, Robert ; Trunschke, Annette ; Brookhaven National Laboratory (BNL)</creatorcontrib><description>Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm−2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.
Only uncomfortable seats left: At high surface coverages of molybdenum oxide, at which surface hydroxy anchoring sites are limited, surface metal oxide molecules are forced to be anchored in strained/frustrated configurations. This strain leads to increased reactivity and explains the non‐linear coverage dependence sometimes observed in monolayer‐type supported metal oxide catalysts.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201306620</identifier><identifier>PMID: 24259425</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Anchors ; Catalysis ; Catalysts ; Density ; heterogeneous catalysis ; Metal oxides ; molybdenum ; Molybdenum oxides ; olefin metathesis ; oxidation ; Spectrum analysis ; Strain ; supported catalysts ; Surface chemistry</subject><ispartof>Angewandte Chemie (International ed.), 2013-12, Vol.52 (51), p.13553-13557</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6140-6b86d8f3356c800c07f7d38b0884ee6c71348ee1a47e882886062c80f24164213</citedby><cites>FETCH-LOGICAL-c6140-6b86d8f3356c800c07f7d38b0884ee6c71348ee1a47e882886062c80f24164213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201306620$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201306620$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24259425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1162651$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Amakawa, Kazuhiko</creatorcontrib><creatorcontrib>Sun, Lili</creatorcontrib><creatorcontrib>Guo, Chunsheng</creatorcontrib><creatorcontrib>Hävecker, Michael</creatorcontrib><creatorcontrib>Kube, Pierre</creatorcontrib><creatorcontrib>Wachs, Israel E.</creatorcontrib><creatorcontrib>Lwin, Soe</creatorcontrib><creatorcontrib>Frenkel, Anatoly I.</creatorcontrib><creatorcontrib>Patlolla, Anitha</creatorcontrib><creatorcontrib>Hermann, Klaus</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Trunschke, Annette</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL)</creatorcontrib><title>How Strain Affects the Reactivity of Surface Metal Oxide Catalysts</title><title>Angewandte Chemie (International ed.)</title><addtitle>Angew. Chem. Int. Ed</addtitle><description>Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm−2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.
Only uncomfortable seats left: At high surface coverages of molybdenum oxide, at which surface hydroxy anchoring sites are limited, surface metal oxide molecules are forced to be anchored in strained/frustrated configurations. This strain leads to increased reactivity and explains the non‐linear coverage dependence sometimes observed in monolayer‐type supported metal oxide catalysts.</description><subject>Anchors</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Density</subject><subject>heterogeneous catalysis</subject><subject>Metal oxides</subject><subject>molybdenum</subject><subject>Molybdenum oxides</subject><subject>olefin metathesis</subject><subject>oxidation</subject><subject>Spectrum analysis</subject><subject>Strain</subject><subject>supported catalysts</subject><subject>Surface chemistry</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0cFvFCEUBnBiNLZWrx7NRC9eZuUBA8xx3dRtTW0Tq6k3wrKPlDo7U4Gx3f9eNlM3xksPBA6_9-WRj5DXQGdAKftg-4AzRoFTKRl9Qg6hYVBzpfjT8hac10o3cEBepHRTvNZUPicHTLCmLeeQfDwZ7qrLHG3oq7n36HKq8jVWX9G6HH6HvK0GX12O0VuH1RfMtqsu7sMaq4Ut723K6SV55m2X8NXDfUS-fzr-tjipzy6Wp4v5We0kCFrLlZZr7TlvpNOUOqq8WnO9oloLROkUcKERwQqFWpdNJZWsSM8ESMGAH5G3U-6QcjDJhYzu2g19X5Y2AJLJZofeT-g2Dr9GTNlsQnLYdbbHYUwGFAVglGr-OBWylYI2IAt99x-9GcbYl9_uVNm0Fa0uajYpF4eUInpzG8PGxq0BanZtmV1bZt9WGXjzEDuuNrje87_1FNBO4C50uH0kzszPT4__Da-n2ZAy3u9nbfxppOKqMVfnS9Potv2xvPpsWv4HK0KrMA</recordid><startdate>20131216</startdate><enddate>20131216</enddate><creator>Amakawa, Kazuhiko</creator><creator>Sun, Lili</creator><creator>Guo, Chunsheng</creator><creator>Hävecker, Michael</creator><creator>Kube, Pierre</creator><creator>Wachs, Israel E.</creator><creator>Lwin, Soe</creator><creator>Frenkel, Anatoly I.</creator><creator>Patlolla, Anitha</creator><creator>Hermann, Klaus</creator><creator>Schlögl, Robert</creator><creator>Trunschke, Annette</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>OTOTI</scope></search><sort><creationdate>20131216</creationdate><title>How Strain Affects the Reactivity of Surface Metal Oxide Catalysts</title><author>Amakawa, Kazuhiko ; Sun, Lili ; Guo, Chunsheng ; Hävecker, Michael ; Kube, Pierre ; Wachs, Israel E. ; Lwin, Soe ; Frenkel, Anatoly I. ; Patlolla, Anitha ; Hermann, Klaus ; Schlögl, Robert ; Trunschke, Annette</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6140-6b86d8f3356c800c07f7d38b0884ee6c71348ee1a47e882886062c80f24164213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anchors</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Density</topic><topic>heterogeneous catalysis</topic><topic>Metal oxides</topic><topic>molybdenum</topic><topic>Molybdenum oxides</topic><topic>olefin metathesis</topic><topic>oxidation</topic><topic>Spectrum analysis</topic><topic>Strain</topic><topic>supported catalysts</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amakawa, Kazuhiko</creatorcontrib><creatorcontrib>Sun, Lili</creatorcontrib><creatorcontrib>Guo, Chunsheng</creatorcontrib><creatorcontrib>Hävecker, Michael</creatorcontrib><creatorcontrib>Kube, Pierre</creatorcontrib><creatorcontrib>Wachs, Israel E.</creatorcontrib><creatorcontrib>Lwin, Soe</creatorcontrib><creatorcontrib>Frenkel, Anatoly I.</creatorcontrib><creatorcontrib>Patlolla, Anitha</creatorcontrib><creatorcontrib>Hermann, Klaus</creatorcontrib><creatorcontrib>Schlögl, Robert</creatorcontrib><creatorcontrib>Trunschke, Annette</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL)</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>OSTI.GOV</collection><jtitle>Angewandte Chemie (International ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amakawa, Kazuhiko</au><au>Sun, Lili</au><au>Guo, Chunsheng</au><au>Hävecker, Michael</au><au>Kube, Pierre</au><au>Wachs, Israel E.</au><au>Lwin, Soe</au><au>Frenkel, Anatoly I.</au><au>Patlolla, Anitha</au><au>Hermann, Klaus</au><au>Schlögl, Robert</au><au>Trunschke, Annette</au><aucorp>Brookhaven National Laboratory (BNL)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Strain Affects the Reactivity of Surface Metal Oxide Catalysts</atitle><jtitle>Angewandte Chemie (International ed.)</jtitle><addtitle>Angew. Chem. Int. Ed</addtitle><date>2013-12-16</date><risdate>2013</risdate><volume>52</volume><issue>51</issue><spage>13553</spage><epage>13557</epage><pages>13553-13557</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm−2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.
Only uncomfortable seats left: At high surface coverages of molybdenum oxide, at which surface hydroxy anchoring sites are limited, surface metal oxide molecules are forced to be anchored in strained/frustrated configurations. This strain leads to increased reactivity and explains the non‐linear coverage dependence sometimes observed in monolayer‐type supported metal oxide catalysts.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>24259425</pmid><doi>10.1002/anie.201306620</doi><tpages>5</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie (International ed.), 2013-12, Vol.52 (51), p.13553-13557 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_osti_scitechconnect_1162651 |
source | Wiley Online Library |
subjects | Anchors Catalysis Catalysts Density heterogeneous catalysis Metal oxides molybdenum Molybdenum oxides olefin metathesis oxidation Spectrum analysis Strain supported catalysts Surface chemistry |
title | How Strain Affects the Reactivity of Surface Metal Oxide Catalysts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T02%3A51%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Strain%20Affects%20the%20Reactivity%20of%20Surface%20Metal%20Oxide%20Catalysts&rft.jtitle=Angewandte%20Chemie%20(International%20ed.)&rft.au=Amakawa,%20Kazuhiko&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)&rft.date=2013-12-16&rft.volume=52&rft.issue=51&rft.spage=13553&rft.epage=13557&rft.pages=13553-13557&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201306620&rft_dat=%3Cproquest_osti_%3E1469640516%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1468609498&rft_id=info:pmid/24259425&rfr_iscdi=true |