Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems
One of the keys towards high efficiency thermophotovoltaic (TPV) energy conversion systems lies in spectral control. Here, we present detailed performance predictions of realistic TPV systems incorporating experimentally demonstrated advanced spectral control components. Compared to the blackbody em...
Gespeichert in:
Veröffentlicht in: | Optics express 2013-11, Vol.21 Suppl 6 (S6), p.A1035-A1051 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | A1051 |
---|---|
container_issue | S6 |
container_start_page | A1035 |
container_title | Optics express |
container_volume | 21 Suppl 6 |
creator | Yeng, Yi Xiang Chan, Walker R Rinnerbauer, Veronika Joannopoulos, John D Soljačić, Marin Celanovic, Ivan |
description | One of the keys towards high efficiency thermophotovoltaic (TPV) energy conversion systems lies in spectral control. Here, we present detailed performance predictions of realistic TPV systems incorporating experimentally demonstrated advanced spectral control components. Compared to the blackbody emitter, the optimized two-dimensional (2D) tantalum (Ta) photonic crystal (PhC) selective emitter enables up to 100% improvement in system efficiency. When combined with the well characterized cold side tandem filter and the latest InGaAs TPV cells, a TPV energy conversion system with radiant heat-to-electricity efficiency of 25% and power density of 0.68 W cm(-2) is achievable today even at a relatively low temperature of 1320 K. The efficiency could be increased to ∼ 40% (the theoretical 0.62 eV single bandgap TPV thermodynamic limit at 1320 K is 55%) as future implementation of more optimized TPV cells approach their theoretical thermodynamic limit. |
doi_str_mv | 10.1364/OE.21.0A1035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1160685</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499151187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-1e13f7cd0c0e951e645ca8b832c7fd7bbaad7362c2fe7e92360b9e92524fba843</originalsourceid><addsrcrecordid>eNpNkD1PwzAURS0EoqWwMaOIiYEWP9uJk7GqyodUqQwwW47zogYlcbHdiv57XFoQ033SPe8Oh5BroBPgmXhYzicMJnQKlKcnZAi0EGNBc3n67x6QC-8_KAUhC3lOBkykIAomhqR8RVdb1-neYKJ73e584xNbJ_i1Rtd02Afdtrtk2-iyxWS9ssH2jUmM2_nYJNiv9q9VElboOvvTb20bdGR8RLDzl-Ss1q3Hq2OOyPvj_G32PF4sn15m08XY8DQLY0DgtTQVNRSLFDATqdF5mXNmZF3JstS6kjxjhtUosWA8o2URM2WiLnUu-IjcHnatD43ypgloVsb2PZqgADKa5WmE7g7Q2tnPDfqgusYbbFvdo914FbUUkALkMqL3B9Q4673DWq2jEO12Cqjaq1fLuWKgDuojfnNc3pQdVn_wr2v-DS1HgN8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499151187</pqid></control><display><type>article</type><title>Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Yeng, Yi Xiang ; Chan, Walker R ; Rinnerbauer, Veronika ; Joannopoulos, John D ; Soljačić, Marin ; Celanovic, Ivan</creator><creatorcontrib>Yeng, Yi Xiang ; Chan, Walker R ; Rinnerbauer, Veronika ; Joannopoulos, John D ; Soljačić, Marin ; Celanovic, Ivan ; Energy Frontier Research Centers (EFRC) ; Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><description>One of the keys towards high efficiency thermophotovoltaic (TPV) energy conversion systems lies in spectral control. Here, we present detailed performance predictions of realistic TPV systems incorporating experimentally demonstrated advanced spectral control components. Compared to the blackbody emitter, the optimized two-dimensional (2D) tantalum (Ta) photonic crystal (PhC) selective emitter enables up to 100% improvement in system efficiency. When combined with the well characterized cold side tandem filter and the latest InGaAs TPV cells, a TPV energy conversion system with radiant heat-to-electricity efficiency of 25% and power density of 0.68 W cm(-2) is achievable today even at a relatively low temperature of 1320 K. The efficiency could be increased to ∼ 40% (the theoretical 0.62 eV single bandgap TPV thermodynamic limit at 1320 K is 55%) as future implementation of more optimized TPV cells approach their theoretical thermodynamic limit.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.21.0A1035</identifier><identifier>PMID: 24514924</identifier><language>eng</language><publisher>United States</publisher><subject>solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><ispartof>Optics express, 2013-11, Vol.21 Suppl 6 (S6), p.A1035-A1051</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-1e13f7cd0c0e951e645ca8b832c7fd7bbaad7362c2fe7e92360b9e92524fba843</citedby><cites>FETCH-LOGICAL-c356t-1e13f7cd0c0e951e645ca8b832c7fd7bbaad7362c2fe7e92360b9e92524fba843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24514924$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1160685$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Yeng, Yi Xiang</creatorcontrib><creatorcontrib>Chan, Walker R</creatorcontrib><creatorcontrib>Rinnerbauer, Veronika</creatorcontrib><creatorcontrib>Joannopoulos, John D</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><creatorcontrib>Celanovic, Ivan</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><title>Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems</title><title>Optics express</title><addtitle>Opt Express</addtitle><description>One of the keys towards high efficiency thermophotovoltaic (TPV) energy conversion systems lies in spectral control. Here, we present detailed performance predictions of realistic TPV systems incorporating experimentally demonstrated advanced spectral control components. Compared to the blackbody emitter, the optimized two-dimensional (2D) tantalum (Ta) photonic crystal (PhC) selective emitter enables up to 100% improvement in system efficiency. When combined with the well characterized cold side tandem filter and the latest InGaAs TPV cells, a TPV energy conversion system with radiant heat-to-electricity efficiency of 25% and power density of 0.68 W cm(-2) is achievable today even at a relatively low temperature of 1320 K. The efficiency could be increased to ∼ 40% (the theoretical 0.62 eV single bandgap TPV thermodynamic limit at 1320 K is 55%) as future implementation of more optimized TPV cells approach their theoretical thermodynamic limit.</description><subject>solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpNkD1PwzAURS0EoqWwMaOIiYEWP9uJk7GqyodUqQwwW47zogYlcbHdiv57XFoQ033SPe8Oh5BroBPgmXhYzicMJnQKlKcnZAi0EGNBc3n67x6QC-8_KAUhC3lOBkykIAomhqR8RVdb1-neYKJ73e584xNbJ_i1Rtd02Afdtrtk2-iyxWS9ssH2jUmM2_nYJNiv9q9VElboOvvTb20bdGR8RLDzl-Ss1q3Hq2OOyPvj_G32PF4sn15m08XY8DQLY0DgtTQVNRSLFDATqdF5mXNmZF3JstS6kjxjhtUosWA8o2URM2WiLnUu-IjcHnatD43ypgloVsb2PZqgADKa5WmE7g7Q2tnPDfqgusYbbFvdo914FbUUkALkMqL3B9Q4673DWq2jEO12Cqjaq1fLuWKgDuojfnNc3pQdVn_wr2v-DS1HgN8</recordid><startdate>20131104</startdate><enddate>20131104</enddate><creator>Yeng, Yi Xiang</creator><creator>Chan, Walker R</creator><creator>Rinnerbauer, Veronika</creator><creator>Joannopoulos, John D</creator><creator>Soljačić, Marin</creator><creator>Celanovic, Ivan</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20131104</creationdate><title>Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems</title><author>Yeng, Yi Xiang ; Chan, Walker R ; Rinnerbauer, Veronika ; Joannopoulos, John D ; Soljačić, Marin ; Celanovic, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-1e13f7cd0c0e951e645ca8b832c7fd7bbaad7362c2fe7e92360b9e92524fba843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yeng, Yi Xiang</creatorcontrib><creatorcontrib>Chan, Walker R</creatorcontrib><creatorcontrib>Rinnerbauer, Veronika</creatorcontrib><creatorcontrib>Joannopoulos, John D</creatorcontrib><creatorcontrib>Soljačić, Marin</creatorcontrib><creatorcontrib>Celanovic, Ivan</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC)</creatorcontrib><creatorcontrib>Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yeng, Yi Xiang</au><au>Chan, Walker R</au><au>Rinnerbauer, Veronika</au><au>Joannopoulos, John D</au><au>Soljačić, Marin</au><au>Celanovic, Ivan</au><aucorp>Energy Frontier Research Centers (EFRC)</aucorp><aucorp>Solid-State Solar-Thermal Energy Conversion Center (S3TEC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems</atitle><jtitle>Optics express</jtitle><addtitle>Opt Express</addtitle><date>2013-11-04</date><risdate>2013</risdate><volume>21 Suppl 6</volume><issue>S6</issue><spage>A1035</spage><epage>A1051</epage><pages>A1035-A1051</pages><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>One of the keys towards high efficiency thermophotovoltaic (TPV) energy conversion systems lies in spectral control. Here, we present detailed performance predictions of realistic TPV systems incorporating experimentally demonstrated advanced spectral control components. Compared to the blackbody emitter, the optimized two-dimensional (2D) tantalum (Ta) photonic crystal (PhC) selective emitter enables up to 100% improvement in system efficiency. When combined with the well characterized cold side tandem filter and the latest InGaAs TPV cells, a TPV energy conversion system with radiant heat-to-electricity efficiency of 25% and power density of 0.68 W cm(-2) is achievable today even at a relatively low temperature of 1320 K. The efficiency could be increased to ∼ 40% (the theoretical 0.62 eV single bandgap TPV thermodynamic limit at 1320 K is 55%) as future implementation of more optimized TPV cells approach their theoretical thermodynamic limit.</abstract><cop>United States</cop><pmid>24514924</pmid><doi>10.1364/OE.21.0A1035</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-4087 |
ispartof | Optics express, 2013-11, Vol.21 Suppl 6 (S6), p.A1035-A1051 |
issn | 1094-4087 1094-4087 |
language | eng |
recordid | cdi_osti_scitechconnect_1160685 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | solar (photovoltaic), solar (thermal), solid state lighting, phonons, thermal conductivity, thermoelectric, defects, mechanical behavior, charge transport, spin dynamics, materials and chemistry by design, optics, synthesis (novel materials), synthesis (self-assembly), synthesis (scalable processing) |
title | Performance analysis of experimentally viable photonic crystal enhanced thermophotovoltaic systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T07%3A40%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20experimentally%20viable%20photonic%20crystal%20enhanced%20thermophotovoltaic%20systems&rft.jtitle=Optics%20express&rft.au=Yeng,%20Yi%20Xiang&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)&rft.date=2013-11-04&rft.volume=21%20Suppl%206&rft.issue=S6&rft.spage=A1035&rft.epage=A1051&rft.pages=A1035-A1051&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.21.0A1035&rft_dat=%3Cproquest_osti_%3E1499151187%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499151187&rft_id=info:pmid/24514924&rfr_iscdi=true |