Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons
Here, the secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of conti...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2014-10, Vol.48 (20), p.11944-11953 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11953 |
---|---|
container_issue | 20 |
container_start_page | 11944 |
container_title | Environmental science & technology |
container_volume | 48 |
creator | Fry, Juliane L. Draper, Danielle C. Barsanti, Kelley C. Smith, James N. Ortega, John Winkler, Paul M. Lawler, Michael J. Brown, Steven S. Edwards, Peter M. Cohen, Ronald C. Lee, Lance |
description | Here, the secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3+ monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed. |
doi_str_mv | 10.1021/es502204x |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1160155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1021_es502204x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1015-9bf9c7db7c38a252ad41d6eb3ad62a8e022f799a4684568946e7b874f5b9ad1f3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQQC0EEqUw8A8sNoaAP2LHHktFKVLVDIAEU3TxR3HVxsjO0P77pirqdMM93ek9hO4peaKE0WeXBWGMlLsLNKKCkUIoQS_RiBDKC83l9zW6yXlNCGGcqBFafzgTOwtpj-u0gi4YPHEp5rjBs5i20IfYYejsebsMfYLe4Z_gNhb7FLd4WWOO612wJzp6_BLiyh3p-d6maCC1scu36MrDJru7_zlGX7PXz-m8WNRv79PJojCUUFHo1mtT2bYyXAETDGxJrXQtBysZKDfo-UprKKUqhVS6lK5qVVV60Wqw1PMxejjdjbkPTTahd-Z3kOyc6RtK5fBEDNDjCTKDbE7ON38pbIcMDSXNsWRzLskPKlZmeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons</title><source>ACS Publications</source><creator>Fry, Juliane L. ; Draper, Danielle C. ; Barsanti, Kelley C. ; Smith, James N. ; Ortega, John ; Winkler, Paul M. ; Lawler, Michael J. ; Brown, Steven S. ; Edwards, Peter M. ; Cohen, Ronald C. ; Lee, Lance</creator><creatorcontrib>Fry, Juliane L. ; Draper, Danielle C. ; Barsanti, Kelley C. ; Smith, James N. ; Ortega, John ; Winkler, Paul M. ; Lawler, Michael J. ; Brown, Steven S. ; Edwards, Peter M. ; Cohen, Ronald C. ; Lee, Lance ; Reed College, Portland, OR (United States)</creatorcontrib><description>Here, the secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3+ monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es502204x</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Environmental science & technology, 2014-10, Vol.48 (20), p.11944-11953</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1015-9bf9c7db7c38a252ad41d6eb3ad62a8e022f799a4684568946e7b874f5b9ad1f3</citedby><cites>FETCH-LOGICAL-c1015-9bf9c7db7c38a252ad41d6eb3ad62a8e022f799a4684568946e7b874f5b9ad1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1160155$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fry, Juliane L.</creatorcontrib><creatorcontrib>Draper, Danielle C.</creatorcontrib><creatorcontrib>Barsanti, Kelley C.</creatorcontrib><creatorcontrib>Smith, James N.</creatorcontrib><creatorcontrib>Ortega, John</creatorcontrib><creatorcontrib>Winkler, Paul M.</creatorcontrib><creatorcontrib>Lawler, Michael J.</creatorcontrib><creatorcontrib>Brown, Steven S.</creatorcontrib><creatorcontrib>Edwards, Peter M.</creatorcontrib><creatorcontrib>Cohen, Ronald C.</creatorcontrib><creatorcontrib>Lee, Lance</creatorcontrib><creatorcontrib>Reed College, Portland, OR (United States)</creatorcontrib><title>Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons</title><title>Environmental science & technology</title><description>Here, the secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3+ monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQQC0EEqUw8A8sNoaAP2LHHktFKVLVDIAEU3TxR3HVxsjO0P77pirqdMM93ek9hO4peaKE0WeXBWGMlLsLNKKCkUIoQS_RiBDKC83l9zW6yXlNCGGcqBFafzgTOwtpj-u0gi4YPHEp5rjBs5i20IfYYejsebsMfYLe4Z_gNhb7FLd4WWOO612wJzp6_BLiyh3p-d6maCC1scu36MrDJru7_zlGX7PXz-m8WNRv79PJojCUUFHo1mtT2bYyXAETDGxJrXQtBysZKDfo-UprKKUqhVS6lK5qVVV60Wqw1PMxejjdjbkPTTahd-Z3kOyc6RtK5fBEDNDjCTKDbE7ON38pbIcMDSXNsWRzLskPKlZmeQ</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Fry, Juliane L.</creator><creator>Draper, Danielle C.</creator><creator>Barsanti, Kelley C.</creator><creator>Smith, James N.</creator><creator>Ortega, John</creator><creator>Winkler, Paul M.</creator><creator>Lawler, Michael J.</creator><creator>Brown, Steven S.</creator><creator>Edwards, Peter M.</creator><creator>Cohen, Ronald C.</creator><creator>Lee, Lance</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20141021</creationdate><title>Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons</title><author>Fry, Juliane L. ; Draper, Danielle C. ; Barsanti, Kelley C. ; Smith, James N. ; Ortega, John ; Winkler, Paul M. ; Lawler, Michael J. ; Brown, Steven S. ; Edwards, Peter M. ; Cohen, Ronald C. ; Lee, Lance</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1015-9bf9c7db7c38a252ad41d6eb3ad62a8e022f799a4684568946e7b874f5b9ad1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fry, Juliane L.</creatorcontrib><creatorcontrib>Draper, Danielle C.</creatorcontrib><creatorcontrib>Barsanti, Kelley C.</creatorcontrib><creatorcontrib>Smith, James N.</creatorcontrib><creatorcontrib>Ortega, John</creatorcontrib><creatorcontrib>Winkler, Paul M.</creatorcontrib><creatorcontrib>Lawler, Michael J.</creatorcontrib><creatorcontrib>Brown, Steven S.</creatorcontrib><creatorcontrib>Edwards, Peter M.</creatorcontrib><creatorcontrib>Cohen, Ronald C.</creatorcontrib><creatorcontrib>Lee, Lance</creatorcontrib><creatorcontrib>Reed College, Portland, OR (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fry, Juliane L.</au><au>Draper, Danielle C.</au><au>Barsanti, Kelley C.</au><au>Smith, James N.</au><au>Ortega, John</au><au>Winkler, Paul M.</au><au>Lawler, Michael J.</au><au>Brown, Steven S.</au><au>Edwards, Peter M.</au><au>Cohen, Ronald C.</au><au>Lee, Lance</au><aucorp>Reed College, Portland, OR (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons</atitle><jtitle>Environmental science & technology</jtitle><date>2014-10-21</date><risdate>2014</risdate><volume>48</volume><issue>20</issue><spage>11944</spage><epage>11953</epage><pages>11944-11953</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Here, the secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3+ monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/es502204x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2014-10, Vol.48 (20), p.11944-11953 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_osti_scitechconnect_1160155 |
source | ACS Publications |
subjects | INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY |
title | Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20Organic%20Aerosol%20Formation%20and%20Organic%20Nitrate%20Yield%20from%20NO%203%20Oxidation%20of%20Biogenic%20Hydrocarbons&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Fry,%20Juliane%20L.&rft.aucorp=Reed%20College,%20Portland,%20OR%20(United%20States)&rft.date=2014-10-21&rft.volume=48&rft.issue=20&rft.spage=11944&rft.epage=11953&rft.pages=11944-11953&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/es502204x&rft_dat=%3Ccrossref_osti_%3E10_1021_es502204x%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |