Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons

Here, the secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of conti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2014-10, Vol.48 (20), p.11944-11953
Hauptverfasser: Fry, Juliane L., Draper, Danielle C., Barsanti, Kelley C., Smith, James N., Ortega, John, Winkler, Paul M., Lawler, Michael J., Brown, Steven S., Edwards, Peter M., Cohen, Ronald C., Lee, Lance
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11953
container_issue 20
container_start_page 11944
container_title Environmental science & technology
container_volume 48
creator Fry, Juliane L.
Draper, Danielle C.
Barsanti, Kelley C.
Smith, James N.
Ortega, John
Winkler, Paul M.
Lawler, Michael J.
Brown, Steven S.
Edwards, Peter M.
Cohen, Ronald C.
Lee, Lance
description Here, the secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3+ monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.
doi_str_mv 10.1021/es502204x
format Article
fullrecord <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1160155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1021_es502204x</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1015-9bf9c7db7c38a252ad41d6eb3ad62a8e022f799a4684568946e7b874f5b9ad1f3</originalsourceid><addsrcrecordid>eNo9kD1PwzAQQC0EEqUw8A8sNoaAP2LHHktFKVLVDIAEU3TxR3HVxsjO0P77pirqdMM93ek9hO4peaKE0WeXBWGMlLsLNKKCkUIoQS_RiBDKC83l9zW6yXlNCGGcqBFafzgTOwtpj-u0gi4YPHEp5rjBs5i20IfYYejsebsMfYLe4Z_gNhb7FLd4WWOO612wJzp6_BLiyh3p-d6maCC1scu36MrDJru7_zlGX7PXz-m8WNRv79PJojCUUFHo1mtT2bYyXAETDGxJrXQtBysZKDfo-UprKKUqhVS6lK5qVVV60Wqw1PMxejjdjbkPTTahd-Z3kOyc6RtK5fBEDNDjCTKDbE7ON38pbIcMDSXNsWRzLskPKlZmeQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons</title><source>ACS Publications</source><creator>Fry, Juliane L. ; Draper, Danielle C. ; Barsanti, Kelley C. ; Smith, James N. ; Ortega, John ; Winkler, Paul M. ; Lawler, Michael J. ; Brown, Steven S. ; Edwards, Peter M. ; Cohen, Ronald C. ; Lee, Lance</creator><creatorcontrib>Fry, Juliane L. ; Draper, Danielle C. ; Barsanti, Kelley C. ; Smith, James N. ; Ortega, John ; Winkler, Paul M. ; Lawler, Michael J. ; Brown, Steven S. ; Edwards, Peter M. ; Cohen, Ronald C. ; Lee, Lance ; Reed College, Portland, OR (United States)</creatorcontrib><description>Here, the secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3+ monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es502204x</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><ispartof>Environmental science &amp; technology, 2014-10, Vol.48 (20), p.11944-11953</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1015-9bf9c7db7c38a252ad41d6eb3ad62a8e022f799a4684568946e7b874f5b9ad1f3</citedby><cites>FETCH-LOGICAL-c1015-9bf9c7db7c38a252ad41d6eb3ad62a8e022f799a4684568946e7b874f5b9ad1f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2765,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1160155$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fry, Juliane L.</creatorcontrib><creatorcontrib>Draper, Danielle C.</creatorcontrib><creatorcontrib>Barsanti, Kelley C.</creatorcontrib><creatorcontrib>Smith, James N.</creatorcontrib><creatorcontrib>Ortega, John</creatorcontrib><creatorcontrib>Winkler, Paul M.</creatorcontrib><creatorcontrib>Lawler, Michael J.</creatorcontrib><creatorcontrib>Brown, Steven S.</creatorcontrib><creatorcontrib>Edwards, Peter M.</creatorcontrib><creatorcontrib>Cohen, Ronald C.</creatorcontrib><creatorcontrib>Lee, Lance</creatorcontrib><creatorcontrib>Reed College, Portland, OR (United States)</creatorcontrib><title>Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons</title><title>Environmental science &amp; technology</title><description>Here, the secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3+ monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.</description><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAQQC0EEqUw8A8sNoaAP2LHHktFKVLVDIAEU3TxR3HVxsjO0P77pirqdMM93ek9hO4peaKE0WeXBWGMlLsLNKKCkUIoQS_RiBDKC83l9zW6yXlNCGGcqBFafzgTOwtpj-u0gi4YPHEp5rjBs5i20IfYYejsebsMfYLe4Z_gNhb7FLd4WWOO612wJzp6_BLiyh3p-d6maCC1scu36MrDJru7_zlGX7PXz-m8WNRv79PJojCUUFHo1mtT2bYyXAETDGxJrXQtBysZKDfo-UprKKUqhVS6lK5qVVV60Wqw1PMxejjdjbkPTTahd-Z3kOyc6RtK5fBEDNDjCTKDbE7ON38pbIcMDSXNsWRzLskPKlZmeQ</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Fry, Juliane L.</creator><creator>Draper, Danielle C.</creator><creator>Barsanti, Kelley C.</creator><creator>Smith, James N.</creator><creator>Ortega, John</creator><creator>Winkler, Paul M.</creator><creator>Lawler, Michael J.</creator><creator>Brown, Steven S.</creator><creator>Edwards, Peter M.</creator><creator>Cohen, Ronald C.</creator><creator>Lee, Lance</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>20141021</creationdate><title>Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons</title><author>Fry, Juliane L. ; Draper, Danielle C. ; Barsanti, Kelley C. ; Smith, James N. ; Ortega, John ; Winkler, Paul M. ; Lawler, Michael J. ; Brown, Steven S. ; Edwards, Peter M. ; Cohen, Ronald C. ; Lee, Lance</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1015-9bf9c7db7c38a252ad41d6eb3ad62a8e022f799a4684568946e7b874f5b9ad1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fry, Juliane L.</creatorcontrib><creatorcontrib>Draper, Danielle C.</creatorcontrib><creatorcontrib>Barsanti, Kelley C.</creatorcontrib><creatorcontrib>Smith, James N.</creatorcontrib><creatorcontrib>Ortega, John</creatorcontrib><creatorcontrib>Winkler, Paul M.</creatorcontrib><creatorcontrib>Lawler, Michael J.</creatorcontrib><creatorcontrib>Brown, Steven S.</creatorcontrib><creatorcontrib>Edwards, Peter M.</creatorcontrib><creatorcontrib>Cohen, Ronald C.</creatorcontrib><creatorcontrib>Lee, Lance</creatorcontrib><creatorcontrib>Reed College, Portland, OR (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fry, Juliane L.</au><au>Draper, Danielle C.</au><au>Barsanti, Kelley C.</au><au>Smith, James N.</au><au>Ortega, John</au><au>Winkler, Paul M.</au><au>Lawler, Michael J.</au><au>Brown, Steven S.</au><au>Edwards, Peter M.</au><au>Cohen, Ronald C.</au><au>Lee, Lance</au><aucorp>Reed College, Portland, OR (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons</atitle><jtitle>Environmental science &amp; technology</jtitle><date>2014-10-21</date><risdate>2014</risdate><volume>48</volume><issue>20</issue><spage>11944</spage><epage>11953</epage><pages>11944-11953</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>Here, the secondary organic aerosol (SOA) mass yields from NO3 oxidation of a series of biogenic volatile organic compounds (BVOCs), consisting of five monoterpenes and one sesquiterpene (α-pinene, β-pinene, Δ-3-carene, limonene, sabinene, and β-caryophyllene), were investigated in a series of continuous flow experiments in a 10 m3 indoor Teflon chamber. By making in situ measurements of the nitrate radical and employing a kinetics box model, we generate time-dependent yield curves as a function of reacted BVOC. SOA yields varied dramatically among the different BVOCs, from zero for α-pinene to 38–65% for Δ-3-carene and 86% for β-caryophyllene at mass loading of 10 μg m–3, suggesting that model mechanisms that treat all NO3+ monoterpene reactions equally will lead to errors in predicted SOA depending on each location’s mix of BVOC emissions. In most cases, organonitrate is a dominant component of the aerosol produced, but in the case of α-pinene, little organonitrate and no aerosol is formed.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/es502204x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2014-10, Vol.48 (20), p.11944-11953
issn 0013-936X
1520-5851
language eng
recordid cdi_osti_scitechconnect_1160155
source ACS Publications
subjects INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
title Secondary Organic Aerosol Formation and Organic Nitrate Yield from NO 3 Oxidation of Biogenic Hydrocarbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T09%3A33%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Secondary%20Organic%20Aerosol%20Formation%20and%20Organic%20Nitrate%20Yield%20from%20NO%203%20Oxidation%20of%20Biogenic%20Hydrocarbons&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Fry,%20Juliane%20L.&rft.aucorp=Reed%20College,%20Portland,%20OR%20(United%20States)&rft.date=2014-10-21&rft.volume=48&rft.issue=20&rft.spage=11944&rft.epage=11953&rft.pages=11944-11953&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/es502204x&rft_dat=%3Ccrossref_osti_%3E10_1021_es502204x%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true