Dissociative Chemisorption of Methane on Ni and Pt Surfaces: Mode-Specific Chemistry and the Effects of Lattice Motion

The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental interest. Not only is it the rate-limiting step in the steam re-forming of natural gas, but also the reaction exhibits interesting mode-specific behavior and a strong dependence on the temperature of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-10, Vol.118 (41), p.9615-9631
Hauptverfasser: Nave, Sven, Tiwari, Ashwani K, Jackson, Bret
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9631
container_issue 41
container_start_page 9615
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 118
creator Nave, Sven
Tiwari, Ashwani K
Jackson, Bret
description The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental interest. Not only is it the rate-limiting step in the steam re-forming of natural gas, but also the reaction exhibits interesting mode-specific behavior and a strong dependence on the temperature of the metal. Electronic structure methods are used to explore this reaction on various Ni and Pt surfaces, with a focus on how the transition state is modified by motion of the metal lattice atoms. These results are used to construct models that explain the strong variation in reactivity with substrate temperature, shown to result primarily from changes in the dissociation barrier height with lattice motion. The dynamics of the dissociative chemisorption of CH4 on Ni and Pt is explored, using a fully quantum approach based on the reaction path Hamiltonian that includes all 15 molecular degrees of freedom and the effects of lattice motion. Agreement with experiment is good, and vibrational excitation of the molecule is shown to significantly enhance reactivity. The efficacy for this is examined in terms of the vibrationally nonadiabatic couplings, mode softening, mode symmetry, and energy localization in the reactive bond.
doi_str_mv 10.1021/jp5063644
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1159847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1613953853</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-73e699d69328685b329e7db5f84563ce400fc9d8e837f765c4adde2dc9b12dc73</originalsourceid><addsrcrecordid>eNqNkU1rVDEUhoNYbK0u_AMSBEEXtyY3HzdxJ2O1wrQK1XXIJCdMhpmb2yS30H9vxhm7cuEmH_Cch7x5EXpFyQUlPf2wmQSRTHL-BJ1R0ZNO9FQ8bWeidCck06foeSkbQghlPX-GTntBBeODOkP3n2MpyUVb4z3gxRp2saQ81ZhGnAK-hrq2I-B2u4nYjh7_qPh2zsE6KB_xdfLQ3U7gYojuOF3zwx-wrgFfhgCulr1paWuNDtrI3v0CnQS7LfDyuJ-jX18ufy6uuuX3r98Wn5ad5YOs3cBAau2lZr2SSqxYr2HwKxEUb7EccEKC016BYkMYpHDceg-9d3pF2zqwc_Tm4E2lRlNcrODWLo1je5ahVGjF99C7AzTldDdDqabFcLDdtuRpLoYOsidiEOw_UEmZFkwJ1tD3B9TlVEqGYKYcdzY_GErMvjbzWFtjXx-182oH_pH821MD3h4A64rZpDmP7df-IfoNzL2c6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1613953853</pqid></control><display><type>article</type><title>Dissociative Chemisorption of Methane on Ni and Pt Surfaces: Mode-Specific Chemistry and the Effects of Lattice Motion</title><source>ACS Publications</source><creator>Nave, Sven ; Tiwari, Ashwani K ; Jackson, Bret</creator><creatorcontrib>Nave, Sven ; Tiwari, Ashwani K ; Jackson, Bret</creatorcontrib><description>The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental interest. Not only is it the rate-limiting step in the steam re-forming of natural gas, but also the reaction exhibits interesting mode-specific behavior and a strong dependence on the temperature of the metal. Electronic structure methods are used to explore this reaction on various Ni and Pt surfaces, with a focus on how the transition state is modified by motion of the metal lattice atoms. These results are used to construct models that explain the strong variation in reactivity with substrate temperature, shown to result primarily from changes in the dissociation barrier height with lattice motion. The dynamics of the dissociative chemisorption of CH4 on Ni and Pt is explored, using a fully quantum approach based on the reaction path Hamiltonian that includes all 15 molecular degrees of freedom and the effects of lattice motion. Agreement with experiment is good, and vibrational excitation of the molecule is shown to significantly enhance reactivity. The efficacy for this is examined in terms of the vibrationally nonadiabatic couplings, mode softening, mode symmetry, and energy localization in the reactive bond.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp5063644</identifier><identifier>PMID: 25153478</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemisorption ; Lattice vibration ; Lattices ; Methane ; Nickel ; Platinum ; Softening ; Surface chemistry</subject><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2014-10, Vol.118 (41), p.9615-9631</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-73e699d69328685b329e7db5f84563ce400fc9d8e837f765c4adde2dc9b12dc73</citedby><cites>FETCH-LOGICAL-a476t-73e699d69328685b329e7db5f84563ce400fc9d8e837f765c4adde2dc9b12dc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp5063644$$EPDF$$P50$$Gacs$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp5063644$$EHTML$$P50$$Gacs$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25153478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1159847$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nave, Sven</creatorcontrib><creatorcontrib>Tiwari, Ashwani K</creatorcontrib><creatorcontrib>Jackson, Bret</creatorcontrib><title>Dissociative Chemisorption of Methane on Ni and Pt Surfaces: Mode-Specific Chemistry and the Effects of Lattice Motion</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental interest. Not only is it the rate-limiting step in the steam re-forming of natural gas, but also the reaction exhibits interesting mode-specific behavior and a strong dependence on the temperature of the metal. Electronic structure methods are used to explore this reaction on various Ni and Pt surfaces, with a focus on how the transition state is modified by motion of the metal lattice atoms. These results are used to construct models that explain the strong variation in reactivity with substrate temperature, shown to result primarily from changes in the dissociation barrier height with lattice motion. The dynamics of the dissociative chemisorption of CH4 on Ni and Pt is explored, using a fully quantum approach based on the reaction path Hamiltonian that includes all 15 molecular degrees of freedom and the effects of lattice motion. Agreement with experiment is good, and vibrational excitation of the molecule is shown to significantly enhance reactivity. The efficacy for this is examined in terms of the vibrationally nonadiabatic couplings, mode softening, mode symmetry, and energy localization in the reactive bond.</description><subject>Chemisorption</subject><subject>Lattice vibration</subject><subject>Lattices</subject><subject>Methane</subject><subject>Nickel</subject><subject>Platinum</subject><subject>Softening</subject><subject>Surface chemistry</subject><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N~.</sourceid><recordid>eNqNkU1rVDEUhoNYbK0u_AMSBEEXtyY3HzdxJ2O1wrQK1XXIJCdMhpmb2yS30H9vxhm7cuEmH_Cch7x5EXpFyQUlPf2wmQSRTHL-BJ1R0ZNO9FQ8bWeidCck06foeSkbQghlPX-GTntBBeODOkP3n2MpyUVb4z3gxRp2saQ81ZhGnAK-hrq2I-B2u4nYjh7_qPh2zsE6KB_xdfLQ3U7gYojuOF3zwx-wrgFfhgCulr1paWuNDtrI3v0CnQS7LfDyuJ-jX18ufy6uuuX3r98Wn5ad5YOs3cBAau2lZr2SSqxYr2HwKxEUb7EccEKC016BYkMYpHDceg-9d3pF2zqwc_Tm4E2lRlNcrODWLo1je5ahVGjF99C7AzTldDdDqabFcLDdtuRpLoYOsidiEOw_UEmZFkwJ1tD3B9TlVEqGYKYcdzY_GErMvjbzWFtjXx-182oH_pH821MD3h4A64rZpDmP7df-IfoNzL2c6w</recordid><startdate>20141016</startdate><enddate>20141016</enddate><creator>Nave, Sven</creator><creator>Tiwari, Ashwani K</creator><creator>Jackson, Bret</creator><general>American Chemical Society</general><scope>N~.</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20141016</creationdate><title>Dissociative Chemisorption of Methane on Ni and Pt Surfaces: Mode-Specific Chemistry and the Effects of Lattice Motion</title><author>Nave, Sven ; Tiwari, Ashwani K ; Jackson, Bret</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-73e699d69328685b329e7db5f84563ce400fc9d8e837f765c4adde2dc9b12dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Chemisorption</topic><topic>Lattice vibration</topic><topic>Lattices</topic><topic>Methane</topic><topic>Nickel</topic><topic>Platinum</topic><topic>Softening</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nave, Sven</creatorcontrib><creatorcontrib>Tiwari, Ashwani K</creatorcontrib><creatorcontrib>Jackson, Bret</creatorcontrib><collection>American Chemical Society (ACS) Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nave, Sven</au><au>Tiwari, Ashwani K</au><au>Jackson, Bret</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissociative Chemisorption of Methane on Ni and Pt Surfaces: Mode-Specific Chemistry and the Effects of Lattice Motion</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2014-10-16</date><risdate>2014</risdate><volume>118</volume><issue>41</issue><spage>9615</spage><epage>9631</epage><pages>9615-9631</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The dissociative chemisorption of methane on metal surfaces is of great practical and fundamental interest. Not only is it the rate-limiting step in the steam re-forming of natural gas, but also the reaction exhibits interesting mode-specific behavior and a strong dependence on the temperature of the metal. Electronic structure methods are used to explore this reaction on various Ni and Pt surfaces, with a focus on how the transition state is modified by motion of the metal lattice atoms. These results are used to construct models that explain the strong variation in reactivity with substrate temperature, shown to result primarily from changes in the dissociation barrier height with lattice motion. The dynamics of the dissociative chemisorption of CH4 on Ni and Pt is explored, using a fully quantum approach based on the reaction path Hamiltonian that includes all 15 molecular degrees of freedom and the effects of lattice motion. Agreement with experiment is good, and vibrational excitation of the molecule is shown to significantly enhance reactivity. The efficacy for this is examined in terms of the vibrationally nonadiabatic couplings, mode softening, mode symmetry, and energy localization in the reactive bond.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25153478</pmid><doi>10.1021/jp5063644</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2014-10, Vol.118 (41), p.9615-9631
issn 1089-5639
1520-5215
language eng
recordid cdi_osti_scitechconnect_1159847
source ACS Publications
subjects Chemisorption
Lattice vibration
Lattices
Methane
Nickel
Platinum
Softening
Surface chemistry
title Dissociative Chemisorption of Methane on Ni and Pt Surfaces: Mode-Specific Chemistry and the Effects of Lattice Motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T22%3A53%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissociative%20Chemisorption%20of%20Methane%20on%20Ni%20and%20Pt%20Surfaces:%20Mode-Specific%20Chemistry%20and%20the%20Effects%20of%20Lattice%20Motion&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Nave,%20Sven&rft.date=2014-10-16&rft.volume=118&rft.issue=41&rft.spage=9615&rft.epage=9631&rft.pages=9615-9631&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp5063644&rft_dat=%3Cproquest_osti_%3E1613953853%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1613953853&rft_id=info:pmid/25153478&rfr_iscdi=true