Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries

Rechargeable non-lithium-ion (Na+, K+, Mg2+, Ca2+, and Al3+) batteries have attracted great attention as emerging low-cost and high energy-density technologies for large-scale renewable energy storage applications. However, the development of these batteries is hindered by the limited choice of high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2014-09, Vol.8 (9), p.9606-9615
Hauptverfasser: Xie, Yu, Dall’Agnese, Yohan, Naguib, Michael, Gogotsi, Yury, Barsoum, Michel W, Zhuang, Houlong L, Kent, Paul R. C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9615
container_issue 9
container_start_page 9606
container_title ACS nano
container_volume 8
creator Xie, Yu
Dall’Agnese, Yohan
Naguib, Michael
Gogotsi, Yury
Barsoum, Michel W
Zhuang, Houlong L
Kent, Paul R. C
description Rechargeable non-lithium-ion (Na+, K+, Mg2+, Ca2+, and Al3+) batteries have attracted great attention as emerging low-cost and high energy-density technologies for large-scale renewable energy storage applications. However, the development of these batteries is hindered by the limited choice of high-performance electrode materials. In this work, MXene nanosheets, a class of two-dimensional transition-metal carbides, are predicted to serve as high-performing anodes for non-lithium-ion batteries by combined first-principles simulations and experimental measurements. Both O-terminated and bare MXenes are shown to be promising anode materials with high capacities and good rate capabilities, while bare MXenes show better performance. Our experiments clearly demonstrate the feasibility of Na- and K-ion intercalation into terminated MXenes. Moreover, stable multilayer adsorption is predicted for Mg and Al, which significantly increases their theoretical capacities. We also show that O-terminated MXenes can decompose into bare MXenes and metal oxides when in contact with Mg, Ca, or Al. Our results provide insight into metal ion storage mechanisms on two-dimensional materials and suggest a route to preparing bare MXene nanosheets.
doi_str_mv 10.1021/nn503921j
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1159477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1564603061</sourcerecordid><originalsourceid>FETCH-LOGICAL-a408t-80826502c3d489fe9307d28cb2b28220325a52c9a806b60b8ea031c9c3dde1403</originalsourceid><addsrcrecordid>eNpt0D1PwzAQBmALgfge-AMoQkKCIXB2YscZS8WXVD4GEGyW41xUV60NtjPArydQ6MR0p9Nz7_ASckDhjAKj585xKGpGZ2tkm9aFyEGK1_XVzukW2YlxBsArWYlNssU45ZWo2TZ5eQzYWpOsd5l2bTae6qBNwmA_9c_Rd9ndKzrM7rXzcYqYspHzLcas8yG79y6f2DS1_SK_HfSFTt-_GPfIRqfnEfd_5y55vrp8Gt_kk4fr2_FokusSZMolSCY4MFO0paw7rAuoWiZNwxomGYOCcc2ZqbUE0QhoJGooqKkH3yItodglR8tcH5NV0diEZmq8c2iSopTXZVUN6GSJ3oJ_7zEmtbDR4HyuHfo-KspFKaAAQQd6uqQm-BgDduot2IUOH4qC-i5brcoe7OFvbN8ssF3Jv3YHcLwE2kQ1831wQxX_BH0BU22EMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1564603061</pqid></control><display><type>article</type><title>Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries</title><source>ACS Publications</source><creator>Xie, Yu ; Dall’Agnese, Yohan ; Naguib, Michael ; Gogotsi, Yury ; Barsoum, Michel W ; Zhuang, Houlong L ; Kent, Paul R. C</creator><creatorcontrib>Xie, Yu ; Dall’Agnese, Yohan ; Naguib, Michael ; Gogotsi, Yury ; Barsoum, Michel W ; Zhuang, Houlong L ; Kent, Paul R. C ; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><description>Rechargeable non-lithium-ion (Na+, K+, Mg2+, Ca2+, and Al3+) batteries have attracted great attention as emerging low-cost and high energy-density technologies for large-scale renewable energy storage applications. However, the development of these batteries is hindered by the limited choice of high-performance electrode materials. In this work, MXene nanosheets, a class of two-dimensional transition-metal carbides, are predicted to serve as high-performing anodes for non-lithium-ion batteries by combined first-principles simulations and experimental measurements. Both O-terminated and bare MXenes are shown to be promising anode materials with high capacities and good rate capabilities, while bare MXenes show better performance. Our experiments clearly demonstrate the feasibility of Na- and K-ion intercalation into terminated MXenes. Moreover, stable multilayer adsorption is predicted for Mg and Al, which significantly increases their theoretical capacities. We also show that O-terminated MXenes can decompose into bare MXenes and metal oxides when in contact with Mg, Ca, or Al. Our results provide insight into metal ion storage mechanisms on two-dimensional materials and suggest a route to preparing bare MXene nanosheets.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/nn503921j</identifier><identifier>PMID: 25157692</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2014-09, Vol.8 (9), p.9606-9615</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a408t-80826502c3d489fe9307d28cb2b28220325a52c9a806b60b8ea031c9c3dde1403</citedby><cites>FETCH-LOGICAL-a408t-80826502c3d489fe9307d28cb2b28220325a52c9a806b60b8ea031c9c3dde1403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/nn503921j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/nn503921j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25157692$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1159477$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Dall’Agnese, Yohan</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Barsoum, Michel W</creatorcontrib><creatorcontrib>Zhuang, Houlong L</creatorcontrib><creatorcontrib>Kent, Paul R. C</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><title>Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Rechargeable non-lithium-ion (Na+, K+, Mg2+, Ca2+, and Al3+) batteries have attracted great attention as emerging low-cost and high energy-density technologies for large-scale renewable energy storage applications. However, the development of these batteries is hindered by the limited choice of high-performance electrode materials. In this work, MXene nanosheets, a class of two-dimensional transition-metal carbides, are predicted to serve as high-performing anodes for non-lithium-ion batteries by combined first-principles simulations and experimental measurements. Both O-terminated and bare MXenes are shown to be promising anode materials with high capacities and good rate capabilities, while bare MXenes show better performance. Our experiments clearly demonstrate the feasibility of Na- and K-ion intercalation into terminated MXenes. Moreover, stable multilayer adsorption is predicted for Mg and Al, which significantly increases their theoretical capacities. We also show that O-terminated MXenes can decompose into bare MXenes and metal oxides when in contact with Mg, Ca, or Al. Our results provide insight into metal ion storage mechanisms on two-dimensional materials and suggest a route to preparing bare MXene nanosheets.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpt0D1PwzAQBmALgfge-AMoQkKCIXB2YscZS8WXVD4GEGyW41xUV60NtjPArydQ6MR0p9Nz7_ASckDhjAKj585xKGpGZ2tkm9aFyEGK1_XVzukW2YlxBsArWYlNssU45ZWo2TZ5eQzYWpOsd5l2bTae6qBNwmA_9c_Rd9ndKzrM7rXzcYqYspHzLcas8yG79y6f2DS1_SK_HfSFTt-_GPfIRqfnEfd_5y55vrp8Gt_kk4fr2_FokusSZMolSCY4MFO0paw7rAuoWiZNwxomGYOCcc2ZqbUE0QhoJGooqKkH3yItodglR8tcH5NV0diEZmq8c2iSopTXZVUN6GSJ3oJ_7zEmtbDR4HyuHfo-KspFKaAAQQd6uqQm-BgDduot2IUOH4qC-i5brcoe7OFvbN8ssF3Jv3YHcLwE2kQ1831wQxX_BH0BU22EMw</recordid><startdate>20140923</startdate><enddate>20140923</enddate><creator>Xie, Yu</creator><creator>Dall’Agnese, Yohan</creator><creator>Naguib, Michael</creator><creator>Gogotsi, Yury</creator><creator>Barsoum, Michel W</creator><creator>Zhuang, Houlong L</creator><creator>Kent, Paul R. C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20140923</creationdate><title>Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries</title><author>Xie, Yu ; Dall’Agnese, Yohan ; Naguib, Michael ; Gogotsi, Yury ; Barsoum, Michel W ; Zhuang, Houlong L ; Kent, Paul R. C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a408t-80826502c3d489fe9307d28cb2b28220325a52c9a806b60b8ea031c9c3dde1403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Yu</creatorcontrib><creatorcontrib>Dall’Agnese, Yohan</creatorcontrib><creatorcontrib>Naguib, Michael</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><creatorcontrib>Barsoum, Michel W</creatorcontrib><creatorcontrib>Zhuang, Houlong L</creatorcontrib><creatorcontrib>Kent, Paul R. C</creatorcontrib><creatorcontrib>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Yu</au><au>Dall’Agnese, Yohan</au><au>Naguib, Michael</au><au>Gogotsi, Yury</au><au>Barsoum, Michel W</au><au>Zhuang, Houlong L</au><au>Kent, Paul R. C</au><aucorp>Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2014-09-23</date><risdate>2014</risdate><volume>8</volume><issue>9</issue><spage>9606</spage><epage>9615</epage><pages>9606-9615</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Rechargeable non-lithium-ion (Na+, K+, Mg2+, Ca2+, and Al3+) batteries have attracted great attention as emerging low-cost and high energy-density technologies for large-scale renewable energy storage applications. However, the development of these batteries is hindered by the limited choice of high-performance electrode materials. In this work, MXene nanosheets, a class of two-dimensional transition-metal carbides, are predicted to serve as high-performing anodes for non-lithium-ion batteries by combined first-principles simulations and experimental measurements. Both O-terminated and bare MXenes are shown to be promising anode materials with high capacities and good rate capabilities, while bare MXenes show better performance. Our experiments clearly demonstrate the feasibility of Na- and K-ion intercalation into terminated MXenes. Moreover, stable multilayer adsorption is predicted for Mg and Al, which significantly increases their theoretical capacities. We also show that O-terminated MXenes can decompose into bare MXenes and metal oxides when in contact with Mg, Ca, or Al. Our results provide insight into metal ion storage mechanisms on two-dimensional materials and suggest a route to preparing bare MXene nanosheets.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>25157692</pmid><doi>10.1021/nn503921j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2014-09, Vol.8 (9), p.9606-9615
issn 1936-0851
1936-086X
language eng
recordid cdi_osti_scitechconnect_1159477
source ACS Publications
title Prediction and Characterization of MXene Nanosheet Anodes for Non-Lithium-Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A41%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20Characterization%20of%20MXene%20Nanosheet%20Anodes%20for%20Non-Lithium-Ion%20Batteries&rft.jtitle=ACS%20nano&rft.au=Xie,%20Yu&rft.aucorp=Oak%20Ridge%20National%20Lab.%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2014-09-23&rft.volume=8&rft.issue=9&rft.spage=9606&rft.epage=9615&rft.pages=9606-9615&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/nn503921j&rft_dat=%3Cproquest_osti_%3E1564603061%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1564603061&rft_id=info:pmid/25157692&rfr_iscdi=true