Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion
High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (volt...
Gespeichert in:
Veröffentlicht in: | Chemistry of materials 2014-11, Vol.26 (21), p.6272-6280 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6280 |
---|---|
container_issue | 21 |
container_start_page | 6272 |
container_title | Chemistry of materials |
container_volume | 26 |
creator | Mohanty, Debasish Li, Jianlin Abraham, Daniel P Huq, Ashfia Payzant, E. Andrew Wood, David L Daniel, Claus |
description | High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct → LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct → LiLitet]; (ii) migration of Mn from the octahedral sites of the transition-metal layer to the “permanent” octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct → MnLitet → MnLioct)]. These findings open the door to potential routes to mitigate this “atomic restructuring” in the high-voltage LMR composite oxide by manipulating their composition/structure for practical use in high-energy-density lithium-ion batteries. |
doi_str_mv | 10.1021/cm5031415 |
format | Article |
fullrecord | <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1159409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d101598089</sourcerecordid><originalsourceid>FETCH-LOGICAL-a321t-20e1039ee398c8544e8dce71109ca978549509b8a4d3e306bb5365ec692a166a3</originalsourceid><addsrcrecordid>eNptkEFLAzEUhIMoWKsH_0EQPHiIJrub7cab1tYWKj3Yel3S7Otuym5SkrTQ3-CfNlrx5OnB8M3wZhC6ZvSe0YQ9qI7TlGWMn6Ae4wklnNLkFPVoIQYkG_D8HF14v6GURbzooc-lcXIPrTY1Dg3gD9sGWQMZywrwG6hGGu07rA2e6LohIwOuPpAXMF6HA57p0OhdR6bW4GcZAjgN_hHPna6jw65_IhcQnGygcrLFQxm0NR6vrcPvW20gStbswfkoX6KztWw9XP3ePlqOR4vhhMzmr9Ph04zINGGBJBQYTQVAKgpV8CyDolIwiIWEkmIQFcGpWBUyq1JIab5a8TTnoHKRSJbnMu2jm2Ou9UGXXukQeyprDKhQMsZFRkWE7o6QctZ7B-ty63Qn3aFktPyeuvybOrK3R1YqX27szpn4_j_cFy70fPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion</title><source>ACS Publications</source><creator>Mohanty, Debasish ; Li, Jianlin ; Abraham, Daniel P ; Huq, Ashfia ; Payzant, E. Andrew ; Wood, David L ; Daniel, Claus</creator><creatorcontrib>Mohanty, Debasish ; Li, Jianlin ; Abraham, Daniel P ; Huq, Ashfia ; Payzant, E. Andrew ; Wood, David L ; Daniel, Claus ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><description>High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct → LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct → LiLitet]; (ii) migration of Mn from the octahedral sites of the transition-metal layer to the “permanent” octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct → MnLitet → MnLioct)]. These findings open the door to potential routes to mitigate this “atomic restructuring” in the high-voltage LMR composite oxide by manipulating their composition/structure for practical use in high-energy-density lithium-ion batteries.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm5031415</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE ; lithium ion batteries ; lithium rich ; magnetic susceptibility ; Neutron diffraction ; phase transformation ; voltage fade</subject><ispartof>Chemistry of materials, 2014-11, Vol.26 (21), p.6272-6280</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a321t-20e1039ee398c8544e8dce71109ca978549509b8a4d3e306bb5365ec692a166a3</citedby><cites>FETCH-LOGICAL-a321t-20e1039ee398c8544e8dce71109ca978549509b8a4d3e306bb5365ec692a166a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm5031415$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm5031415$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1159409$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohanty, Debasish</creatorcontrib><creatorcontrib>Li, Jianlin</creatorcontrib><creatorcontrib>Abraham, Daniel P</creatorcontrib><creatorcontrib>Huq, Ashfia</creatorcontrib><creatorcontrib>Payzant, E. Andrew</creatorcontrib><creatorcontrib>Wood, David L</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><title>Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct → LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct → LiLitet]; (ii) migration of Mn from the octahedral sites of the transition-metal layer to the “permanent” octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct → MnLitet → MnLioct)]. These findings open the door to potential routes to mitigate this “atomic restructuring” in the high-voltage LMR composite oxide by manipulating their composition/structure for practical use in high-energy-density lithium-ion batteries.</description><subject>ENERGY STORAGE</subject><subject>lithium ion batteries</subject><subject>lithium rich</subject><subject>magnetic susceptibility</subject><subject>Neutron diffraction</subject><subject>phase transformation</subject><subject>voltage fade</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkEFLAzEUhIMoWKsH_0EQPHiIJrub7cab1tYWKj3Yel3S7Otuym5SkrTQ3-CfNlrx5OnB8M3wZhC6ZvSe0YQ9qI7TlGWMn6Ae4wklnNLkFPVoIQYkG_D8HF14v6GURbzooc-lcXIPrTY1Dg3gD9sGWQMZywrwG6hGGu07rA2e6LohIwOuPpAXMF6HA57p0OhdR6bW4GcZAjgN_hHPna6jw65_IhcQnGygcrLFQxm0NR6vrcPvW20gStbswfkoX6KztWw9XP3ePlqOR4vhhMzmr9Ph04zINGGBJBQYTQVAKgpV8CyDolIwiIWEkmIQFcGpWBUyq1JIab5a8TTnoHKRSJbnMu2jm2Ou9UGXXukQeyprDKhQMsZFRkWE7o6QctZ7B-ty63Qn3aFktPyeuvybOrK3R1YqX27szpn4_j_cFy70fPs</recordid><startdate>20141111</startdate><enddate>20141111</enddate><creator>Mohanty, Debasish</creator><creator>Li, Jianlin</creator><creator>Abraham, Daniel P</creator><creator>Huq, Ashfia</creator><creator>Payzant, E. Andrew</creator><creator>Wood, David L</creator><creator>Daniel, Claus</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20141111</creationdate><title>Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion</title><author>Mohanty, Debasish ; Li, Jianlin ; Abraham, Daniel P ; Huq, Ashfia ; Payzant, E. Andrew ; Wood, David L ; Daniel, Claus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a321t-20e1039ee398c8544e8dce71109ca978549509b8a4d3e306bb5365ec692a166a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ENERGY STORAGE</topic><topic>lithium ion batteries</topic><topic>lithium rich</topic><topic>magnetic susceptibility</topic><topic>Neutron diffraction</topic><topic>phase transformation</topic><topic>voltage fade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Debasish</creatorcontrib><creatorcontrib>Li, Jianlin</creatorcontrib><creatorcontrib>Abraham, Daniel P</creatorcontrib><creatorcontrib>Huq, Ashfia</creatorcontrib><creatorcontrib>Payzant, E. Andrew</creatorcontrib><creatorcontrib>Wood, David L</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, Debasish</au><au>Li, Jianlin</au><au>Abraham, Daniel P</au><au>Huq, Ashfia</au><au>Payzant, E. Andrew</au><au>Wood, David L</au><au>Daniel, Claus</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2014-11-11</date><risdate>2014</risdate><volume>26</volume><issue>21</issue><spage>6272</spage><epage>6280</epage><pages>6272-6280</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct → LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct → LiLitet]; (ii) migration of Mn from the octahedral sites of the transition-metal layer to the “permanent” octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct → MnLitet → MnLioct)]. These findings open the door to potential routes to mitigate this “atomic restructuring” in the high-voltage LMR composite oxide by manipulating their composition/structure for practical use in high-energy-density lithium-ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/cm5031415</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2014-11, Vol.26 (21), p.6272-6280 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_osti_scitechconnect_1159409 |
source | ACS Publications |
subjects | ENERGY STORAGE lithium ion batteries lithium rich magnetic susceptibility Neutron diffraction phase transformation voltage fade |
title | Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Voltage-Fade%20Mechanism%20in%20High-Energy-Density%20Lithium-Ion%20Batteries:%20Origin%20of%20the%20Tetrahedral%20Cations%20for%20Spinel%20Conversion&rft.jtitle=Chemistry%20of%20materials&rft.au=Mohanty,%20Debasish&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Spallation%20Neutron%20Source%20(SNS)&rft.date=2014-11-11&rft.volume=26&rft.issue=21&rft.spage=6272&rft.epage=6280&rft.pages=6272-6280&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm5031415&rft_dat=%3Cacs_osti_%3Ed101598089%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |