Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion

High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (volt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials 2014-11, Vol.26 (21), p.6272-6280
Hauptverfasser: Mohanty, Debasish, Li, Jianlin, Abraham, Daniel P, Huq, Ashfia, Payzant, E. Andrew, Wood, David L, Daniel, Claus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6280
container_issue 21
container_start_page 6272
container_title Chemistry of materials
container_volume 26
creator Mohanty, Debasish
Li, Jianlin
Abraham, Daniel P
Huq, Ashfia
Payzant, E. Andrew
Wood, David L
Daniel, Claus
description High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct → LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct → LiLitet]; (ii) migration of Mn from the octahedral sites of the transition-metal layer to the “permanent” octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct → MnLitet → MnLioct)]. These findings open the door to potential routes to mitigate this “atomic restructuring” in the high-voltage LMR composite oxide by manipulating their composition/structure for practical use in high-energy-density lithium-ion batteries.
doi_str_mv 10.1021/cm5031415
format Article
fullrecord <record><control><sourceid>acs_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1159409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d101598089</sourcerecordid><originalsourceid>FETCH-LOGICAL-a321t-20e1039ee398c8544e8dce71109ca978549509b8a4d3e306bb5365ec692a166a3</originalsourceid><addsrcrecordid>eNptkEFLAzEUhIMoWKsH_0EQPHiIJrub7cab1tYWKj3Yel3S7Otuym5SkrTQ3-CfNlrx5OnB8M3wZhC6ZvSe0YQ9qI7TlGWMn6Ae4wklnNLkFPVoIQYkG_D8HF14v6GURbzooc-lcXIPrTY1Dg3gD9sGWQMZywrwG6hGGu07rA2e6LohIwOuPpAXMF6HA57p0OhdR6bW4GcZAjgN_hHPna6jw65_IhcQnGygcrLFQxm0NR6vrcPvW20gStbswfkoX6KztWw9XP3ePlqOR4vhhMzmr9Ph04zINGGBJBQYTQVAKgpV8CyDolIwiIWEkmIQFcGpWBUyq1JIab5a8TTnoHKRSJbnMu2jm2Ou9UGXXukQeyprDKhQMsZFRkWE7o6QctZ7B-ty63Qn3aFktPyeuvybOrK3R1YqX27szpn4_j_cFy70fPs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion</title><source>ACS Publications</source><creator>Mohanty, Debasish ; Li, Jianlin ; Abraham, Daniel P ; Huq, Ashfia ; Payzant, E. Andrew ; Wood, David L ; Daniel, Claus</creator><creatorcontrib>Mohanty, Debasish ; Li, Jianlin ; Abraham, Daniel P ; Huq, Ashfia ; Payzant, E. Andrew ; Wood, David L ; Daniel, Claus ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><description>High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct → LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct → LiLitet]; (ii) migration of Mn from the octahedral sites of the transition-metal layer to the “permanent” octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct → MnLitet → MnLioct)]. These findings open the door to potential routes to mitigate this “atomic restructuring” in the high-voltage LMR composite oxide by manipulating their composition/structure for practical use in high-energy-density lithium-ion batteries.</description><identifier>ISSN: 0897-4756</identifier><identifier>EISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm5031415</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>ENERGY STORAGE ; lithium ion batteries ; lithium rich ; magnetic susceptibility ; Neutron diffraction ; phase transformation ; voltage fade</subject><ispartof>Chemistry of materials, 2014-11, Vol.26 (21), p.6272-6280</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a321t-20e1039ee398c8544e8dce71109ca978549509b8a4d3e306bb5365ec692a166a3</citedby><cites>FETCH-LOGICAL-a321t-20e1039ee398c8544e8dce71109ca978549509b8a4d3e306bb5365ec692a166a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/cm5031415$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/cm5031415$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1159409$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mohanty, Debasish</creatorcontrib><creatorcontrib>Li, Jianlin</creatorcontrib><creatorcontrib>Abraham, Daniel P</creatorcontrib><creatorcontrib>Huq, Ashfia</creatorcontrib><creatorcontrib>Payzant, E. Andrew</creatorcontrib><creatorcontrib>Wood, David L</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><title>Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion</title><title>Chemistry of materials</title><addtitle>Chem. Mater</addtitle><description>High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct → LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct → LiLitet]; (ii) migration of Mn from the octahedral sites of the transition-metal layer to the “permanent” octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct → MnLitet → MnLioct)]. These findings open the door to potential routes to mitigate this “atomic restructuring” in the high-voltage LMR composite oxide by manipulating their composition/structure for practical use in high-energy-density lithium-ion batteries.</description><subject>ENERGY STORAGE</subject><subject>lithium ion batteries</subject><subject>lithium rich</subject><subject>magnetic susceptibility</subject><subject>Neutron diffraction</subject><subject>phase transformation</subject><subject>voltage fade</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkEFLAzEUhIMoWKsH_0EQPHiIJrub7cab1tYWKj3Yel3S7Otuym5SkrTQ3-CfNlrx5OnB8M3wZhC6ZvSe0YQ9qI7TlGWMn6Ae4wklnNLkFPVoIQYkG_D8HF14v6GURbzooc-lcXIPrTY1Dg3gD9sGWQMZywrwG6hGGu07rA2e6LohIwOuPpAXMF6HA57p0OhdR6bW4GcZAjgN_hHPna6jw65_IhcQnGygcrLFQxm0NR6vrcPvW20gStbswfkoX6KztWw9XP3ePlqOR4vhhMzmr9Ph04zINGGBJBQYTQVAKgpV8CyDolIwiIWEkmIQFcGpWBUyq1JIab5a8TTnoHKRSJbnMu2jm2Ou9UGXXukQeyprDKhQMsZFRkWE7o6QctZ7B-ty63Qn3aFktPyeuvybOrK3R1YqX27szpn4_j_cFy70fPs</recordid><startdate>20141111</startdate><enddate>20141111</enddate><creator>Mohanty, Debasish</creator><creator>Li, Jianlin</creator><creator>Abraham, Daniel P</creator><creator>Huq, Ashfia</creator><creator>Payzant, E. Andrew</creator><creator>Wood, David L</creator><creator>Daniel, Claus</creator><general>American Chemical Society</general><general>American Chemical Society (ACS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20141111</creationdate><title>Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion</title><author>Mohanty, Debasish ; Li, Jianlin ; Abraham, Daniel P ; Huq, Ashfia ; Payzant, E. Andrew ; Wood, David L ; Daniel, Claus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a321t-20e1039ee398c8544e8dce71109ca978549509b8a4d3e306bb5365ec692a166a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>ENERGY STORAGE</topic><topic>lithium ion batteries</topic><topic>lithium rich</topic><topic>magnetic susceptibility</topic><topic>Neutron diffraction</topic><topic>phase transformation</topic><topic>voltage fade</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohanty, Debasish</creatorcontrib><creatorcontrib>Li, Jianlin</creatorcontrib><creatorcontrib>Abraham, Daniel P</creatorcontrib><creatorcontrib>Huq, Ashfia</creatorcontrib><creatorcontrib>Payzant, E. Andrew</creatorcontrib><creatorcontrib>Wood, David L</creatorcontrib><creatorcontrib>Daniel, Claus</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohanty, Debasish</au><au>Li, Jianlin</au><au>Abraham, Daniel P</au><au>Huq, Ashfia</au><au>Payzant, E. Andrew</au><au>Wood, David L</au><au>Daniel, Claus</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Spallation Neutron Source (SNS)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion</atitle><jtitle>Chemistry of materials</jtitle><addtitle>Chem. Mater</addtitle><date>2014-11-11</date><risdate>2014</risdate><volume>26</volume><issue>21</issue><spage>6272</spage><epage>6280</epage><pages>6272-6280</pages><issn>0897-4756</issn><eissn>1520-5002</eissn><abstract>High-voltage layered lithium- and manganese-rich (LMR) oxides have the potential to dramatically enhance the energy density of current Li-ion energy storage systems. However, these materials are currently not used commonly; one reason is their inability to maintain a consistent voltage profile (voltage fade) during electrochemical cycling. This report rationalizes the cause of this voltage fade by providing evidence of layered to spinel (LS) structural evolution pathways in the host Li1.2Mn0.55Ni0.15Co0.1O2 oxide. By employing neutron powder diffraction, we show that LS structural rearrangement in the LMR oxide occurs through a tetrahedral cation intermediate via the following: (i) diffusion of lithium atoms from octahedral to tetrahedral sites of the lithium layer [(LiLioct → LiLitet] which is followed by the dispersal of the lithium ions from the adjacent octahedral site of the metal layer to the tetrahedral sites of lithium layer [LiTMoct → LiLitet]; (ii) migration of Mn from the octahedral sites of the transition-metal layer to the “permanent” octahedral site of lithium layer via tetrahedral site of lithium layer [MnTMoct → MnLitet → MnLioct)]. These findings open the door to potential routes to mitigate this “atomic restructuring” in the high-voltage LMR composite oxide by manipulating their composition/structure for practical use in high-energy-density lithium-ion batteries.</abstract><cop>United States</cop><pub>American Chemical Society</pub><doi>10.1021/cm5031415</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2014-11, Vol.26 (21), p.6272-6280
issn 0897-4756
1520-5002
language eng
recordid cdi_osti_scitechconnect_1159409
source ACS Publications
subjects ENERGY STORAGE
lithium ion batteries
lithium rich
magnetic susceptibility
Neutron diffraction
phase transformation
voltage fade
title Unraveling the Voltage-Fade Mechanism in High-Energy-Density Lithium-Ion Batteries: Origin of the Tetrahedral Cations for Spinel Conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T11%3A15%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Voltage-Fade%20Mechanism%20in%20High-Energy-Density%20Lithium-Ion%20Batteries:%20Origin%20of%20the%20Tetrahedral%20Cations%20for%20Spinel%20Conversion&rft.jtitle=Chemistry%20of%20materials&rft.au=Mohanty,%20Debasish&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Spallation%20Neutron%20Source%20(SNS)&rft.date=2014-11-11&rft.volume=26&rft.issue=21&rft.spage=6272&rft.epage=6280&rft.pages=6272-6280&rft.issn=0897-4756&rft.eissn=1520-5002&rft_id=info:doi/10.1021/cm5031415&rft_dat=%3Cacs_osti_%3Ed101598089%3C/acs_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true